Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049778

RESUMO

Ideal Adsorbed Solution Theory (IAST) is a predictive model that does not require any mixture data. In gas purification and separation processes, IAST is used to predict multicomponent adsorption equilibrium and selectivity based solely on experimental single-component adsorption isotherms. In this work, the mixed gas adsorption isotherms were predicted using IAST calculations with the Python package (pyIAST). The experimental CO2 and CH4 single-component adsorption isotherms of Mg-gallate were first fitted to isotherm models in which the experimental data best fit the Langmuir model. The presence of CH4 in the gas mixture contributed to a lower predicted amount of adsorbed CO2 due to the competitive adsorption among the different components. Nevertheless, CO2 adsorption was more favorable and resulted in a higher predicted adsorbed amount than CH4. Mg-gallate showed a stronger affinity for CO2 molecules and hence contributed to a higher CO2 adsorption capacity even with the coexistence of a CO2/CH4 mixture. Very high IAST selectivity values for CO2/CH4 were obtained which increased as the gas phase mole fraction of CO2 approached unity. Therefore, IAST calculations suggest that Mg-gallate can act as a potential adsorbent for the separation of CO2/CH4 mixed gas.

2.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500475

RESUMO

Most researchers focused on developing highly selective membranes for CO2/CH4 separation, but their developed membranes often suffered from low permeance. In this present work, we aimed to develop an ultrahigh permeance membrane using a simple coating technique to overcome the trade-off between membrane permeance and selectivity. A commercial silicone membrane with superior permeance but low CO2/CH4 selectivity (in the range of 2-3) was selected as the host for surface modification. Our results revealed that out of the three silane agents tested, only tetraethyl orthosilicate (TEOS) improved the control membrane's permeance and selectivity. This can be due to its short structural chain and better compatibility with the silicone substrate. Further investigation revealed that higher CO2 permeance and selectivity could be attained by coating the membrane with two layers of TEOS. The surface integrity of the TEOS-coated membrane was further improved when an additional polyether block amide (Pebax) layer was established atop the TEOS layer. This additional layer sealed the pin holes of the TEOS layer and enhanced the resultant membrane's performance, achieving CO2/CH4 selectivity of ~19 at CO2 permeance of ~2.3 × 105 barrer. This performance placed our developed membrane to surpass the 2008 Robeson Upper Boundary.


Assuntos
Amidas , Dióxido de Carbono , Humanos , Pesquisadores , Silanos , Silicones
3.
Membranes (Basel) ; 12(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135868

RESUMO

CO2/H2 separation using membrane technology is an important research area in order to obtain high purity hydrogen as one source of clean energy. Finding a suitable inorganic membrane is one of the critical issues, which needs to be explored for CO2/H2 separation. In the present study, Ba-SAPO-34 zeolite membrane was synthesized and followed by a modification process. CO2/H2 separation of the membrane was investigated by varying the independent process variables (CO2 % in the feed, pressure difference across the membrane and temperature). Modeling and optimization for the responses (CO2/H2 separation selectivity and CO2 permeance) was performed by applying response surface methodology and central composite design, which is available in Design Expert software. The accuracy of the models in predicting the response was tested by comparing with the experimental value of response and the two values were in good agreement. The optimization of the models gave CO2 permeance of 19.23 × 10-7 mol/m2 s Pa and CO2/H2 separation selectivity of 11.6 at 5% CO2 in the feed, a pressure difference of 100 kPa, and temperature of 30 °C for Ba-SAPO-34 zeolite membrane.

4.
Chemosphere ; 308(Pt 1): 136167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037948

RESUMO

In this work, we systematically study the performance of tubular ZIF-8 membranes in the separation of small molecules including H2, CO2, N2 and CH4. The tubular ZIF-8 membranes were synthesized on α-alumina support via novel dual approach known as solvent evaporation seeding coupled with microwave assisted growth. The durations for the growth of the seed layer through solvent evaporation and membrane layer via microwave heating were varied. The crystallinity and morphology of the resultant membranes were evaluated by using XRD, SEM and IFM analyses. The performance of the resultant tubular ZIF-8 membranes was assessed for small molecule gases permeation at various pressures and temperatures. Highest flux ranging from 0.02 to 0.61 mol/m2s were obtained for gases CO2, CH4, N2, and H2 at feed pressure of 10 bar, whereas highest ideal selectivity of 12.4, 9.3 and 6.9 were obtained for H2/CH4, CO2/CH4, N2/CH4, respectively, at feed pressure of 10 bar and temperature of 30 °C. This work reveals that the tubular ZIF-8 membrane can be synthesized via a feasible and reproducible solvent evaporation seeding coupled with microwave assisted growth method, which can be further explored for the upscaling of the ZIF-8 tubular membrane in pilot scale for gas separation application.

5.
Chemosphere ; 306: 135529, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780982

RESUMO

Presently, composite membranes emerged as a promising approach to overcome the limitations of polymeric and inorganic membranes particularly in acid gas separation. In the present work, composites membranes were fabricated by combining hierarchical T-Type (h-zeolite T) zeolite and PEBA-1657 at different filler composition that ranging from 5 wt% - 30 wt% for the CO2/CH4 separation. The physicochemical properties of the resultant inorganic filler and membranes were investigated by using Brunauer-Emmett- Teller (BET), field emission scanning electron microscopy (FESEM), Fourier Transform infra-red (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). FESEM and EDX analysis revealed that the formation of voids and agglomeration of particles is pronounced as the fillers loading was increased up to 30 wt%. The single gas permeation test demonstrated that amalgamation of h-zeolite T particles into PEBA-1657 has resulted in the improvement of CO2 permeability up to 122% and CO2/CH4 selectivity up to 31%. Hybrid membrane encapsulated with 25 wt% of h-zeolite T displayed a maximum separation efficiency with the highest CO2 permeability of 164.83 Barrer and CO2/CH4 selectivity of 19.37. However, further increment of fillers composition up to 30 wt% resulted in a sharp reduction of CO2/CH4 selectivity to 15.80 due to the particles sedimentation and agglomeration. Overall, the favorable gas transport behavior of PEBA-1657/h-zeolite T composite membrane indicates its promising prospect for CO2/CH4 separation especially in biogas and natural gas purification application. Future research efforts are directed on the optimization of the fabrication parameters and performance investigation at different operating condition to further enhance the CO2 separation and extend its operability under various environment.


Assuntos
Zeolitas , Biocombustíveis , Ácidos Borônicos , Dióxido de Carbono/química , Polímeros , Zeolitas/química
6.
Polymers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406245

RESUMO

The challenges in developing high CO2 gas fields are governed by several factors such as reservoir condition, feed gas composition, operational pressure and temperature, and selection of appropriate technologies for bulk CO2 separation. Thus, in this work, we report an optimization study on the separation of CO2 from CH4 at high CO2 feed concentration over a functionalized mixed matrix membrane using a statistical tool, response surface methodology (RSM) statistical coupled with central composite design (CCD). The functionalized mixed matrix membrane containing NH2-MIL-125 (Ti) and 6FDA-durene, fabricated in our previous study, was used to perform the separation performance under three operational parameters, namely, feed pressure, temperature, and CO2 feed concentration, ranging from 3.5-12.5 bar, 30.0-50.0 °C and 15-70 mol%, respectively. The CO2 permeability and CO2/CH4 separation factor obtained from the experimental work were varied from 293.2-794.4 Barrer and 5.3-13.0, respectively. In addition, the optimum operational parameters were found at a feed pressure of 12.5 bar, a temperature of 34.7 °C, and a CO2 feed concentration of 70 mol%, which yielded the highest CO2 permeability of 609.3 Barrer and a CO2/CH4 separation factor of 11.6. The average errors between the experimental data and data predicted by the model for CO2 permeability and CO2/CH4 separation factor were 5.1% and 3.3%, respectively, confirming the validity of the proposed model. Overall, the findings of this work provide insights into the future utilization of NH2-MIL-125 (Ti)/6FDA-based mixed matrix membranes in real natural gas purification applications.

7.
Polymers (Basel) ; 14(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406352

RESUMO

Composite membranes comprising NH2-MIL-125(Ti)/PEBAX coated on PDMS/PSf were prepared in this work, and their gas separation performance for high CO2 feed gas was investigated under various operating circumstances, such as pressure and CO2 concentration, in mixed gas conditions. The functional groups and morphology of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). CO2 concentration and feed gas pressure were demonstrated to have a considerable impact on the CO2 and CH4 permeance, as well as the CO2/CH4 mixed gas selectivity of the resultant membrane. As CO2 concentration was raised from 14.5 vol % to 70 vol %, a trade-off between permeance and selectivity was found, as CO2 permeance increased by 136% and CO2/CH4 selectivity reduced by 42.17%. The membrane produced in this work exhibited pressure durability up to 9 bar and adequate gas separation performance at feed gas conditions consisting of high CO2 content.

8.
Membranes (Basel) ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34436392

RESUMO

In recent years, mixed matrix membranes (MMMs) have received worldwide attention for their potential to offer superior gas permeation and separation performance involving CO2 and CH4. However, fabricating defect-free MMMs still remains as a challenge where the incorporation of fillers into MMMs has usually led to some issues including formation of undesirable interfacial voids, which may jeopardize the gas separation performance of the MMMs. This current work investigated the incorporation of zeolite RHO and silane-modified zeolite RHO (NH2-RHO) into polysulfone (PSf) based MMMs with the primary aim of enhancing the membrane's gas permeation and separation performance. The synthesized zeolite RHO, NH2-RHO, and fabricated membranes were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared-attenuated total reflection (FTIR-ATR), thermogravimetric analysis (TGA) and field emission scanning election microscopy (FESEM). The effects of zeolite loading in the MMMs on the CO2/CH4 separation performance were investigated. By incorporating 1 wt% of zeolite RHO into the MMMs, the CO2 permeability and ideal CO2/CH4 selectivity slightly increased by 4.2% and 2.7%, respectively, compared to that of a pristine PSf membrane. On the other hand, a significant enhancement of 45% in ideal CO2/CH4 selectivity was attained by MMMs incorporated with 2 wt% of zeolite NH2-RHO compared to a pristine PSf membrane. Besides, all MMMs incorporated with zeolite NH2-RHO displayed higher ideal CO2/CH4 selectivity than that of the MMMs incorporated with zeolite RHO. By incorporating 1-3 wt% zeolite NH2-RHO into PSf matrix, MMMs without interfacial voids were successfully fabricated. Consequently, significant enhancement in ideal CO2/CH4 selectivity was enabled by the incorporation of zeolite NH2-RHO into MMMs.

9.
Membranes (Basel) ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187312

RESUMO

One of the most critical issues encountered by polymeric membranes for the gas separation process is the trade-off effect between gas permeability and selectivity. The aim of this work is to develop a simple yet effective coating technique to modify the surface properties of commonly used polysulfone (PSF) hollow fiber membranes to address the trade-off effect for CO2/CH4 and O2/N2 separation. In this study, multilayer coated PSF hollow fibers were fabricated by incorporating a graphene oxide (GO) nanosheet into the selective coating layer made of polyether block amide (Pebax). In order to prevent the penetration of Pebax coating solution into the membrane substrate, a gutter layer of polydimethylsiloxane (PDMS) was formed between the substrate and Pebax layer. The impacts of GO loadings (0.0-1.0 wt%) on the Pebax layer properties and the membrane performances were then investigated. XPS data clearly showed the existence of GO in the membrane selective layer, and the higher the amount of GO incorporated the greater the sp2 hybridization state of carbon detected. In terms of coating layer morphology, increasing the GO amount only affected the membrane surface roughness without altering the entire coating layer thickness. Our findings indicated that the addition of 0.8 wt% GO into the Pebax coating layer could produce the best performing multilayer coated membrane, showing 56.1% and 20.9% enhancements in the CO2/CH4 and O2/N2 gas pair selectivities, respectively, in comparison to the membrane without GO incorporation. The improvement is due to the increased tortuous path in the selective layer, which created a higher resistance to the larger gas molecules (CH4 and N2) compared to the smaller gas molecules (CO2 and O2). The best performing membrane also demonstrated a lower degree of plasticization and a very stable performance over the entire 50-h operation, recording CO2/CH4 and O2/N2 gas pair selectivities of 52.57 (CO2 permeance: 28.08 GPU) and 8.05 (O2 permeance: 5.32 GPU), respectively.

10.
RSC Adv ; 10(6): 3493-3510, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35497748

RESUMO

Generation of biogas from organic substances is an attractive evolution of energy generation from fossil-based energy supply to renewable resources. In order to exhibit viability in terms of technical execution while being economically feasible, successful purification strategies for biomethane formation must be applicable to industrial gas streams at realistic pressures and temperatures. Membrane-based upgrading technologies have great potential to promote biogas processes because they involve less energy and low maintenance. However, the development of membranes with good polymer-filler contact and minimum defects remains a great challenge. Hitherto, researchers have been making many attempts at developing an established route to fabricate thin-film composite membranes. In the present work, an innovative coupling between Linde T and fluorinated polyimide was employed for biogas upgrading. A facile technique for membrane fabrication was proposed via optimization of the fabrication parameters. The results indicated that composite membrane fabricated with 2 hours of total dispersion duration demonstrated a homogeneous distribution of Linde T particles in the fluorinated polyimide matrix and improved the separation characteristics by up to 172% in upgrading biomethane quality. Thus, the fabricated membrane is feasible to be employed for large-scale and lucrative production with enhanced performance in biogas purification via the feasible fabrication method employed in this work.

11.
Polymers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835373

RESUMO

CO2 separation from CH4 by using mixed matrix membranes has received great attention due to its higher separation performance compared to neat polymeric membrane. However, Robeson's trade-off between permeability and selectivity still remains a major challenge for mixed matrix membrane in CO2/CH4 separation. In this work, we report the preparation, characterization and CO2/CH4 gas separation properties of mixed matrix membranes containing 6FDA-durene polyimide and ZIF-8 particles functionalized with different types of amine groups. The purpose of introducing amino-functional groups into the filler is to improve the interaction between the filler and polymer, thus enhancing the CO2 /CH4 separation properties. ZIF-8 were functionalized with three differents amino-functional group including 3-(Trimethoxysilyl)propylamine (APTMS), N-[3-(Dimethoxymethylsilyl)propyl ethylenediamine (AAPTMS) and N1-(3-Trimethoxysilylpropyl) diethylenetriamine (AEPTMS). The structural and morphology properties of the resultant membranes were characterized by using different analytical tools. Subsequently, the permeability of CO2 and CH4 gases over the resultant membranes were measured. The results showed that the membrane containing 0.5 wt% AAPTMS-functionalized ZIF-8 in 6FDA- durene polymer matrix displayed highest CO2 permeability of 825 Barrer and CO2/CH4 ideal selectivity of 26.2, which successfully lies on Robeson upper bound limit.

12.
Polymers (Basel) ; 11(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689895

RESUMO

The bottleneck of conventional polymeric membranes applied in industry has a tradeoff between permeability and selectivity that deters its widespread expansion. This can be circumvented through a hybrid membrane that utilizes the advantages of inorganic and polymer materials to improve the gas separation performance. The approach can be further enhanced through the incorporation of amine-impregnated fillers that has the potential to minimize defects while simultaneously enhancing gas affinity. An innovative combination between impregnated Linde T with different numbers of amine-functional groups (i.e., monoamine, diamine, and triamine) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-derived polyimide has been elucidated to explore its potential in CO2/CH4 separation. Detailed physical properties (i.e., free volume and glass transition temperature) and gas transport behavior (i.e., solubility, permeability, and diffusivity) of the fabricated membranes have been examined to unveil the effect of different numbers of amine-functional groups in Linde T fillers. It was found that a hybrid membrane impregnated with Linde T using a diamine functional group demonstrated the highest improvement compared to a pristine polyimide with 3.75- and 1.75-fold enhancements in CO2/CH4 selectivities and CO2 permeability, respectively, which successfully lies on the 2008 Robeson's upper bound. The novel coupling of diamine-impregnated Linde T and 6FDA-derived polyimide is a promising candidate for application in large-scale CO2 removal processes.

13.
Sci Rep ; 9(1): 15062, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636339

RESUMO

In recent years, there are increasing interest on applying ultrasonic irradiation for the synthesis of zeolite due to its advantages including remarkable shortened synthesis duration. In this project, the potential of ultrasonic irradiation treatment on the synthesis of zeolite RHO was investigated. Ultrasonic irradiation treatment time was varied from 30 to 120 minutes for the synthesis of zeolite RHO. The zeolite RHO solid samples were characterized with X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and nitrogen adsorption-desorption analysis. The application of ultrasonic irradiation treatment in this study has accelerated the synthesis of zeolite RHO where the synthesis duration has been significantly shortened to 2 days compared to 8 days required by conventional hydrothermal heating without ultrasonic irradiation treatment. Highly crystalline zeolite RHO crystals in truncated octahedron morphology were successfully formed.

14.
Ultrason Sonochem ; 34: 273-280, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773246

RESUMO

Sonochemical-assisted method has been identified as one of the potential pre-treatment methods which could reduce the formation duration of zeolite as well as other microporous and mesoporous materials. In the present work, zeolite T was synthesized via sonochemical-assisted pre-treatment prior to hydrothermal growth. The durations for sonochemical-assisted pre-treatment were varied from 30min to 90min. Meanwhile, the hydrothermal growth durations were ranged from 0.5 to 3days. The physicochemical properties of the resulting samples were characterized using XRD, FESEM, FTIR and BET. As verified by XRD, the samples synthesized via hydrothermal growth durations of 1, 2 and 3days and sonochemical-assisted pre-treatment durations of 60min and 90min demonstrated zeolite T structure. The samples which underwent sonochemical-assisted pre-treatment duration of 60min yielded higher crystallinity with negligible change of zeolite T morphology. Overall, the lengthy synthesis duration of zeolite T has been successfully reduced from 7days to 1day by applying sonochemical-assisted pre-treatment of 60min, while synthesis duration of 0.5days via sonochemical-assisted pre-treatment of 60min was not sufficient to produce zeolite T structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...