Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 29(22): 2622-2631, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188792

RESUMO

Centrosomes are the major microtubule-nucleating and microtubule-organizing centers of cells and play crucial roles in microtubule anchoring, organelle positioning, and ciliogenesis. At the centrosome core lies a tightly associated or "engaged" mother-daughter centriole pair.  During mitotic exit, removal of centrosomal proteins pericentrin and Cep215 promotes "disengagement" by the dissolution of intercentriolar linkers, ensuring a single centriole duplication event per cell cycle.  Herein, we explore a new mechanism involving vesicular trafficking for the removal of centrosomal Cep215. Using small interfering RNA and CRISPR/Cas9 gene-edited cells, we show that the endocytic protein EHD1 regulates Cep215 transport from centrosomes to the spindle midbody, thus facilitating disengagement and duplication. We demonstrate that EHD1 and Cep215 interact and show that Cep215 displays increased localization to vesicles containing EHD1 during mitosis. Moreover, Cep215-containing vesicles are positive for internalized transferrin, demonstrating their endocytic origin. Thus, we describe a novel relationship between endocytic trafficking and the centrosome cycle, whereby vesicles of endocytic origin are used to remove key regulatory proteins from centrosomes to control centriole duplication.


Assuntos
Centríolos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Antígenos/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Citocinese , Endocitose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Transferrina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Curr Biol ; 27(19): 2951-2962.e5, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28943089

RESUMO

Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.


Assuntos
Proteínas de Transporte/genética , Cavéolas/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas de Transporte Vesicular/genética , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Camundongos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Estresse Mecânico , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...