Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1227-1238, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38364268

RESUMO

Cobalt-doped ZnO (CZO) thin films were deposited on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of a single target prepared with ZnO and Co3O4 powders. Changes in the crystallinity, morphology, optical properties, and chemical composition of the CZO thin films were investigated at various sputtering powers of 45, 60, and 75 W. All samples presented a hexagonal wurtzite-type structure with a preferential c-axis at the (002) plane, along with a distinct change in the strain values through X-ray diffraction patterns. Scanning electron and atomic force microscopy revealed uniform and dense deposition of nanorod CZO samples with a high surface roughness (RMS). The Hall mobility and carrier concentration increased with the introduction of Co+ ions into the ZnO matrix, as seen from the Hall effect study. The gradual increase of the power applied on the target source significantly affected the morphology of the CZO thin film, which is reflected in the CO2-sensing performance. The best gas response to CO2 was recorded for CZO-60 W with a response of 1.45 for 500 ppm CO2, and the response/recovery times were 72 and 35 s, respectively. The distinguishing feature of the CZO sensor is its ability to effectively and rapidly detect the CO2 target gas at room temperature (∼27 °C, RT).


Assuntos
Nanotubos , Óxido de Zinco , Dióxido de Carbono , Temperatura , Cobalto
2.
ACS Appl Mater Interfaces ; 14(36): 41555-41570, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037310

RESUMO

In this study, Ti-doped ZnO films with flower-rod-like nanostructures were synthesized by the successive ionic layer adsorption and reaction (SILAR) method for enhanced NO gas-sensing applications. The stoichiometric ratio of Ti in the host ZnO lattice was confirmed by atomic absorption and energy-dispersive X-ray spectroscopies. All of the synthesized films exhibited a pure wurtzite hexagonal structure that seemed to deteriorate at high Ti doping contents as was manifested by the measured X-ray diffraction patterns. Scanning electron microscopy images of ZnO revealed the coexistence of porous flower- and rod-like structures, which became finer, denser, and more compact with Ti doping. By UV-vis measurements, the transmittance of the synthesized pure ZnO thin film in the visible region (∼75%) increased by about 10% with Ti doping, and the energy band gap seemed to decrease up to some limit of Ti content. Among the fabricated sensors (based on pure ZnO, 1% Ti-doped, 3% Ti-doped, and 5% Ti-doped ZnO films), the best sensing performance was observed for the 1% Ti-doped ZnO film. At first, this was associated with its high density of oxygen vacancies present on the surface of the film and ionized oxygen vacancies present in the ZnO lattice (confirmed, respectively, by X-ray photoelectron and photoluminescence spectroscopies). Nonetheless, this may also be due to its increased crystallinity (confirmed by X-ray diffraction and photoluminescence spectroscopy), high area-to-volume ratio (confirmed by scanning electron microscopy images), high specific surface area (confirmed by Brunauer-Emmett-Teller measurements) as well as high mobility and carrier concentration (confirmed by Hall measurements). The sensor was highly selective to NO gas and showed notable stability as well as very short response and recovery times, which makes it eligible for the early detection of any indoor or outdoor NO gas leakages.

3.
Sci Rep ; 12(1): 851, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039553

RESUMO

Zinc oxide (ZnO) is one of the most promising metal oxide semiconductor materials, particularly for optical and gas sensing applications. The influence of thickness and solvent on various features of ZnO thin films deposited at ambient temperature and barometric pressure by the sequential ionic layer adsorption and reaction method (SILAR) was carefully studied in this work. Ethanol and distilled water (DW) were alternatively used as a solvent for preparation of ZnO precursor solution. Superficial morphology, crystallite structure, optical and electrical characteristics of the thin films of various thickness are examined applying X-ray diffraction (XRD) system, scanning electron microscopy, the atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, Hall effect measurement analysis and UV response study. XRD analysis confirmed that thin films fabricated using ethanol or DW precursor solvents are hexagonal wurtzite ZnO with a preferred growth orientation (002). Furthermore, it was found that thin films made using ethanol are as highly crystalline as thin films made using DW. ZnO thin films prepared using aqueous solutions possess high optical band gaps. However, films prepared with ethanol solvent have low resistivity (10-2 Ω cm) and high electron mobility (750 cm2/Vs). The ethanol solvent-based SILAR method opens opportunities to synthase high quality ZnO thin films for various potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...