Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 4086213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093489

RESUMO

Healthcare is one of the emerging application fields in the Internet of Things (IoT). Stress is a heightened psycho-physiological condition of the human that occurs in response to major objects or events. Stress factors are environmental elements that lead to stress. A person's emotional well-being can be negatively impacted by long-term exposure to several stresses affecting at the same time, which can cause chronic health issues. To avoid strain problems, it is vital to recognize them in their early stages, which can only be done through regular stress monitoring. Wearable gadgets offer constant and real information collecting, which aids in experiencing an increase. An investigation of stress discovery using detecting devices and deep learning-based is implemented in this work. This proposed work investigates stress detection techniques that are utilized with detecting hardware, for example, electroencephalography (EEG), photoplethysmography (PPG), and the Galvanic skin reaction (GSR) as well as in various conditions including traveling and learning. A genetic algorithm is utilized to separate the features, and the ECNN-LSTM is utilized to classify the given information by utilizing the DEAP dataset. Before that, preprocessing strategies are proposed for eliminating artifacts in the signal. Then, the stress that is beyond the threshold value is reached the emergency/alert state; in that case, an expert who predicts the mental stress sends the report to the patient/doctor through the Internet. Finally, the performance is evaluated and compared with the traditional approaches in terms of accuracy, f1-score, precision, and recall.


Assuntos
Internet das Coisas , Algoritmos , Eletroencefalografia , Emoções , Humanos , Estresse Psicológico/diagnóstico
2.
Biomed Res Int ; 2022: 7799812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480141

RESUMO

Brain cancer is one of the cell synthesis diseases. Brain cancer cells are analyzed for patient diagnosis. Due to this composite cell, the conceptual classifications differ from each and every brain cancer investigation. In the gene test, patient prognosis is identified based on individual biocell appearance. Classification of advanced artificial neural network subtypes attains improved performance compared to previous enhanced artificial neural network (EANN) biocell subtype investigation. In this research, the proposed features are selected based on improved gene expression programming (IGEP) with modified brute force algorithm. Then, the maximum and minimum term survivals are classified by using PCA with enhanced artificial neural network (EANN). In this, the improved gene expression programming (IGEP) effectual features are selected by using remainder performance to improve the prognosis efficiency. This system is estimated by using the Cancer Genome Atlas (CGA) dataset. Simulation outputs present improved gene expression programming (IGEP) with modified brute force algorithm which achieves accurate efficiency of 96.37%, specificity of 96.37%, sensitivity of 98.37%, precision of 78.78%, F-measure of 80.22%, and recall of 64.29% when compared to generalized regression neural network (GRNN), improved extreme learning machine (IELM) with minimum redundancy maximum relevance (MRMR) method, and support vector machine (SVM).


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Algoritmos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Simulação por Computador , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...