Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(3): 035301, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31536971

RESUMO

The group delay time was theoretically studied in Weyl semimetals (WSMs) in the presence of strain. The Hartman effect, where the delay time for tunneling through a barrier tends to a constant for large barrier thickness, can be observed in WSMs when the incident angles [Formula: see text] and [Formula: see text], and the unidirectional strain tensor u 33 and shear strain tensor u 32, are larger than some critical values. We show that the Hartman effect is strongly dependent on the strength of the unidirectional strain tensor u 33 and the ratio of the shear strain tensor [Formula: see text]. We also found that tensile and compressive strains have different effects on the group delay time and the transmission probability T in WSMs. Our study shows the possibility of modulating the group delay time and the Hartman effect in strained WSMs.

2.
Sci Rep ; 9(1): 4480, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872691

RESUMO

Tunneling transport across electrical potential barriers in Weyl semimetals with tilted energy dispersion is investigated. We report that the electrons around different valleys experience opposite direction refractions at the barrier interface when the energy dispersion is tilted along one of the transverse directions. Chirality dependent refractions at the barrier interface polarize the Weyl fermions in angle-space according to their valley index. A real magnetic barrier configuration is used to select allowed transmission angles, which results in electrically controllable and switchable valley polarization. Our findings may pave the way for experimental investigation of valley polarization, as well as valleytronic and electron optic applications in Weyl semimetals.

3.
Nano Lett ; 19(4): 2647-2652, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30859825

RESUMO

Band structures are vital in determining the electronic properties of materials. Recently, the two-dimensional (2D) semimetallic transition metal tellurides (WTe2 and MoTe2) have sparked broad research interest because of their elliptical or open Fermi surface, making distinct from the conventional 2D materials. In this study, we demonstrate a centrosymmetric photothermoelectric voltage distribution in WTe2 nanoflakes, which has not been observed in common 2D materials such as graphene and MoS2. Our theoretical model shows the anomalous photothermoelectric effect arises from an anisotropic energy dispersion and micrometer-scale hot carrier diffusion length of WTe2. Further, our results are more consistent with the anisotropic tilt direction of energy dispersion being aligned to the b-axis rather than the a-axis of the WTe2 crystal, which is consistent with the previous first-principle calculations as well as magneto-transport experiments. Our work shows the photothermoelectric current is strongly confined to the anisotropic direction of the energy dispersion in WTe2, which opens an avenue for interesting electro-optic applications such as electron beam collimation and electron lenses.

4.
Nano Lett ; 18(3): 1863-1868, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29473420

RESUMO

We demonstrate quantum dot (QD) formation in three-dimensional Dirac semimetal Cd3As2 nanowires using two electrostatically tuned p-n junctions with a gate and magnetic fields. The linear conductance measured as a function of gate voltage under high magnetic fields is strongly suppressed at the Dirac point close to zero conductance, showing strong conductance oscillations. Remarkably, in this regime, the Cd3As2 nanowire device exhibits Coulomb diamond features, indicating that a clean single QD forms in the Dirac semimetal nanowire. Our results show that a p-type QD can be formed between two n-type leads underneath metal contacts in the nanowire by applying gate voltages under strong magnetic fields. Analysis of the quantum confinement in the gapless band structure confirms that p-n junctions formed between the p-type QD and two neighboring n-type leads under high magnetic fields behave as resistive tunnel barriers due to cyclotron motion, resulting in the suppression of Klein tunneling. The p-type QD with magnetic field-induced confinement shows a single hole filling. Our results will open up a route to quantum devices such as QDs or quantum point contacts based on Dirac and Weyl semimetals.

5.
Sci Rep ; 7(1): 4030, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642501

RESUMO

Most theoretical studies of tunneling in Dirac and the closely related Weyl semimetals have modeled these materials as single Weyl nodes described by the three-dimensional Dirac equation [Formula: see text]. The influence of scattering between the different valleys centered around different Weyl nodes, and the Fermi arc states which connect these nodes are hence not evident from these studies. In this work we study the tunneling in a thin film system of the Dirac semimetal Na3Bi consisting of a central segment with a gate potential, sandwiched between identical semi-infinite source and drain segments. The model Hamiltonian we use for Na3Bi gives, for each spin, two Weyl nodes separated in k-space symmetrically about k z = 0. The presence of a top and bottom surface in the thin film geometry results in the appearance of Fermi arc states and energy subbands. We show that (for each spin) the presence of two Weyl nodes and the Fermi arc states results in enhanced transmission oscillations, and finite transmission even when the energy falls within the bulk band gap in the central segment respectively. These features are not captured in single Weyl node models.

6.
Sci Rep ; 6: 38862, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941894

RESUMO

Klein tunneling refers to the absence of normal backscattering of electrons even under the case of high potential barriers. At the barrier interface, the perfect matching of electron and hole wavefunctions enables a unit transmission probability for normally incident electrons. It is theoretically and experimentally well understood in two-dimensional relativistic materials such as graphene. Here we investigate the Klein tunneling effect in Weyl semimetals under the influence of magnetic field induced by ferromagnetic stripes placed at barrier boundaries. Our results show that the resonance of Fermi wave vector at specific barrier lengths gives rise to perfect transmission rings, i.e., three-dimensional analogue of the so-called magic transmission angles in two-dimensional Dirac semimetals. Besides, the transmission profile can be shifted by application of magnetic field in the central region, a property which may be utilized in electro-optic applications. When the applied potential is close to the Fermi level, a particular incident vector can be selected by tuning the magnetic field, thus enabling highly selective transmission of electrons in the bulk of Weyl semimetals. Our analytical and numerical calculations obtained by considering Dirac electrons in three regions and using experimentally feasible parameters can pave the way for relativistic tunneling applications in Weyl semimetals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...