Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35448463

RESUMO

Reviewing the metabolomics literature is becoming increasingly difficult because of the rapid expansion of relevant journal literature. Text-mining technologies are therefore needed to facilitate more efficient literature reviews. Here we contribute a standardised corpus of full-text publications from metabolomics studies and describe the development of two metabolite named entity recognition (NER) methods. These methods are based on Bidirectional Long Short-Term Memory (BiLSTM) networks and each incorporate different transfer learning techniques (for tokenisation and word embedding). Our first model (MetaboListem) follows prior methodology using GloVe word embeddings. Our second model exploits BERT and BioBERT for embedding and is named TABoLiSTM (Transformer-Affixed BiLSTM). The methods are trained on a novel corpus annotated using rule-based methods, and evaluated on manually annotated metabolomics articles. MetaboListem (F1-score 0.890, precision 0.892, recall 0.888) and TABoLiSTM (BioBERT version: F1-score 0.909, precision 0.926, recall 0.893) have achieved state-of-the-art performance on metabolite NER. A training corpus with full-text sentences from >1000 full-text Open Access metabolomics publications with 105,335 annotated metabolites was created, as well as a manually annotated test corpus (19,138 annotations). This work demonstrates that deep learning algorithms are capable of identifying metabolite names accurately and efficiently in text. The proposed corpus and NER algorithms can be used for metabolomics text-mining tasks such as information retrieval, document classification and literature-based discovery and are available from the omicsNLP GitHub repository.

2.
Front Digit Health ; 4: 788124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243479

RESUMO

To analyse large corpora using machine learning and other Natural Language Processing (NLP) algorithms, the corpora need to be standardized. The BioC format is a community-driven simple data structure for sharing text and annotations, however there is limited access to biomedical literature in BioC format and a lack of bioinformatics tools to convert online publication HTML formats to BioC. We present Auto-CORPus (Automated pipeline for Consistent Outputs from Research Publications), a novel NLP tool for the standardization and conversion of publication HTML and table image files to three convenient machine-interpretable outputs to support biomedical text analytics. Firstly, Auto-CORPus can be configured to convert HTML from various publication sources to BioC. To standardize the description of heterogenous publication sections, the Information Artifact Ontology is used to annotate each section within the BioC output. Secondly, Auto-CORPus transforms publication tables to a JSON format to store, exchange and annotate table data between text analytics systems. The BioC specification does not include a data structure for representing publication table data, so we present a JSON format for sharing table content and metadata. Inline tables within full-text HTML files and linked tables within separate HTML files are processed and converted to machine-interpretable table JSON format. Finally, Auto-CORPus extracts abbreviations declared within publication text and provides an abbreviations JSON output that relates an abbreviation with the full definition. This abbreviation collection supports text mining tasks such as named entity recognition by including abbreviations unique to individual publications that are not contained within standard bio-ontologies and dictionaries. The Auto-CORPus package is freely available with detailed instructions from GitHub at: https://github.com/omicsNLP/Auto-CORPus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...