Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38881419

RESUMO

The musculoskeletal system, crucial for movement and support, relies on the delicate balance of connective tissue homeostasis. Maintaining this equilibrium is essential for tissue health and function. There has been increasing evidence in the last decade that shows the circadian clock as a master regulator of extracellular matrix (ECM) homeostasis in several connective tissue clocks. Very recently, exercise has emerged as a significant entrainment factor for cartilage and intervertebral disc circadian rhythms. Understanding the implications of exercise on connective tissue peripheral clocks holds promise for enhancing tissue health and disease prevention. Exercise-induced factors such as heat, glucocorticoid release, mechanical loading, and inter-tissue crosstalk may play pivotal roles in entraining the circadian rhythm of connective tissues. This mini review underscores the importance of elucidating the mechanisms through which exercise influences circadian rhythms in connective tissues to optimize ECM homeostasis. Leveraging exercise as a modulator of circadian rhythms in connective tissues may offer novel therapeutic approaches to physical training for preventing musculoskeletal disorders and enhancing recovery.

2.
J Anat ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712668

RESUMO

Physical activity can activate extracellular matrix (ECM) protein synthesis and influence the size and mechanical properties of tendon. In this study, we aimed to investigate whether different training histories of horses would influence the synthesis of collagen and other matrix proteins and alter the mechanical properties of tendon. Samples from superficial digital flexor tendon (SDFT) from horses that were either (a) currently race trained (n = 5), (b) previously race trained (n = 5) or (c) untrained (n = 4) were analysed for matrix protein abundance (mass spectrometry), collagen and glycosaminoglycan (GAG) content, ECM gene expression and mechanical properties. It was found that ECM synthesis by tendon fibroblasts in vitro varied depending upon the previous training history. In contrast, fascicle morphology, collagen and GAG content, mechanical properties and ECM gene expression of the tendon did not reveal any significant differences between groups. In conclusion, although we could not identify any direct impact of the physical training history on the mechanical properties or major ECM components of the tendon, it is evident that horse tendon cells are responsive to loading in vivo, and the training background may lead to a modification in the composition of newly synthesised matrix.

3.
Matrix Biol ; 124: 8-22, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913834

RESUMO

The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.


Assuntos
Colágeno , Metaloproteinase 14 da Matriz , Animais , Camundongos , Ritmo Circadiano , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo
4.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924352

RESUMO

The myotendinous junction (MTJ) is a specialized domain of the multinucleated myofibre that is faced with the challenge of maintaining robust cell-matrix contact with the tendon under high mechanical stress and strain. Here, we profiled 24,124 nuclei in semitendinosus muscle-tendon samples from three healthy males by using single-nucleus RNA sequencing (snRNA-seq), alongside spatial transcriptomics, to gain insight into the genes characterizing this specialization in humans. We identified a cluster of MTJ myonuclei represented by 47 enriched transcripts, of which the presence of ABI3BP, ABLIM1, ADAMTSL1, BICD1, CPM, FHOD3, FRAS1 and FREM2 was confirmed at the MTJ at the protein level in immunofluorescence assays. Four distinct subclusters of MTJ myonuclei were apparent, comprising two COL22A1-expressing subclusters and two subclusters lacking COL22A1 expression but with differing fibre type profiles characterized by expression of either MYH7 or MYH1 and/or MYH2. Our findings reveal distinct myonuclei profiles of the human MTJ, which represents a weak link in the musculoskeletal system that is selectively affected in pathological conditions ranging from muscle strains to muscular dystrophies.


Assuntos
Junção Miotendínea , Tendões , Masculino , Humanos , Tendões/fisiologia , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Forminas/metabolismo
5.
J Appl Physiol (1985) ; 134(5): 1278-1286, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995911

RESUMO

Both aging and physical activity can influence the amount of intramuscular connective tissue in skeletal muscle, but the impact of these upon specific extracellular matrix (ECM) proteins in skeletal muscle is unknown. We investigated the proteome profile of intramuscular connective tissue by label-free proteomic analysis of cellular protein-depleted extracts from lateral gastrocnemius muscle of old (22-23 mo old) and middle-aged (11 mo old) male mice subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We hypothesized that aging is correlated with an increased amount of connective tissue proteins in skeletal muscle and that regular physical activity can counteract these age-related changes. We found that dominating cellular proteins were diminished in the urea/thiourea extract, which was therefore used for proteomics. Proteomic analysis identified 482 proteins and showed enrichment for ECM proteins. Statistical analysis revealed that the abundances of 86 proteins changed with age. Twenty-three of these differentially abundant proteins were identified as structural ECM proteins (e.g., collagens and laminins) and all of these were significantly more abundant with aging. No significant effect of training or interaction between training and advance in age was found for any proteins. Finally, we found a lower protein concentration in the urea/thiourea extracts from the old mice compared with the middle-aged mice. Our findings indicate that the intramuscular ECM solubility is affected by increased age but is not altered by physical training.NEW & NOTEWORTHY We investigated the impact of aging and exercise on extracellular matrix components of intramuscular connective tissue using proteomics. Middle-aged and old mice were subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We prepared extracts of extracellular matrix proteins depleted of cellular proteins. Our findings indicate that intramuscular connective tissue alters its soluble protein content with age but is unaffected by training.


Assuntos
Condicionamento Físico Animal , Proteoma , Masculino , Camundongos , Animais , Proteoma/metabolismo , Proteômica , Atividade Motora , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Tecido Conjuntivo , Proteínas da Matriz Extracelular/metabolismo
6.
J Physiol ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810732

RESUMO

Overuse injury in tendon tissue (tendinopathy) is a frequent and costly musculoskeletal disorder and represents a major clinical problem with unsolved pathogenesis. Studies in mice have demonstrated that circadian clock-controlled genes are vital for protein homeostasis and important in the development of tendinopathy. We performed RNA sequencing, collagen content and ultrastructural analyses on human tendon biopsies obtained 12 h apart in healthy individuals to establish whether human tendon is a peripheral clock tissue and we performed RNA sequencing on patients with chronic tendinopathy to examine the expression of circadian clock genes in tendinopathic tissues. We found time-dependent expression of 280 RNAs including 11 conserved circadian clock genes in healthy tendons and markedly fewer (23) differential RNAs with chronic tendinopathy. Further, the expression of COL1A1 and COL1A2 was reduced at night but was not circadian rhythmic in synchronised human tenocyte cultures. In conclusion, day-to-night changes in gene expression in healthy human patellar tendons indicate a conserved circadian clock as well as the existence of a night reduction in collagen I expression. KEY POINTS: Tendinopathy is a major clinical problem with unsolved pathogenesis. Previous work in mice has shown that a robust circadian rhythm is required for collagen homeostasis in tendons. The use of circadian medicine in the diagnosis and treatment of tendinopathy has been stifled by the lack of studies on human tissue. Here, we establish that the expression of circadian clock genes in human tendons is time dependent, and now we have data to corroborate that circadian output is reduced in diseased tendon tissues. We consider our findings to be of significance in advancing the use of the tendon circadian clock as a therapeutic target or preclinical biomarker for tendinopathy.

7.
Int Urol Nephrol ; 55(8): 2059-2066, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36811817

RESUMO

BACKGROUND: Although methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization is common among end-stage kidney disease patients undergoing haemodialysis, few studies were focused on MRSA nasal carriers among haemodialysis patients with central venous catheters (CVCs). The aim of this study is to evaluate the risk factors, various clinical outcomes and effect of decolonization for MRSA nasal colonization among patients on haemodialysis via CVCs. METHODS: This was a single-centre non-concurrent cohort study of 676 patients who had new haemodialysis CVCs inserted. They were all screened for MRSA colonization via nasal swabs and were categorized into two groups: MRSA carriers and MRSA noncarriers. Potential risk factors and clinical outcomes were analysed in both groups. All MRSA carriers were given decolonization therapy and the effect of decolonization on subsequent MRSA infection was also performed. RESULTS: Eighty-two patients (12.1%) were MRSA carriers. Multivariate analysis showed that MRSA carrier (OR 5.44; 95% CI 3.02-9.79), long-term care facility resident (OR 4.08; 95% CI 2.07-8.05), history of Staphylococcus aureus infection (OR 3.20; 95% CI 1.42-7.20) and CVC in situ > 21 days (OR 2.12; 95% CI 1.15-3.93) were independent risk factors for MRSA infection. There was no significant difference in all-cause mortality between MRSA carriers and noncarriers. The MRSA infection rates were similar between MRSA carriers with successful decolonization and those who had failed/incomplete decolonization in our subgroup analysis. CONCLUSION: MRSA nasal colonization is an important cause of MRSA infection among haemodialysis patients with CVCs. However, decolonization therapy may not be effective in reducing MRSA infection.


Assuntos
Cateteres Venosos Centrais , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Estudos de Coortes , Cateteres Venosos Centrais/efeitos adversos , Diálise Renal/efeitos adversos , Infecções Estafilocócicas/tratamento farmacológico , Portador Sadio/tratamento farmacológico
8.
Tissue Eng Part A ; 29(9-10): 292-305, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680754

RESUMO

Skeletal muscle possesses adaptability to mechanical loading and regenerative potential following muscle injury due to muscle stem cell activity. So far, it is known that muscle stem cell activity is supported by the roles of several interstitial cells within skeletal muscle in response to muscle damage. The adjacent tendon is also exposed to repetitive mechanical loading and possesses plasticity like skeletal muscle. However, the interplay between the skeletal muscle and adjacent tendon tissue has not been fully investigated. In this study, we tested whether factors released by three-dimensional engineered human tendon constructs in response to uniaxial tensile loading can stimulate the proliferation and differentiation of human-derived myogenic cells (myoblasts). Tendon constructs were subjected to repetitive mechanical loading (4% strain at 0.5 Hz for 4 h) and nonrepetitive loading (0% strain at 0 Hz for 4 h), and the conditioned media from mechanically loaded and nonmechanically loaded control constructs were applied to myoblasts. Immunofluorescence analysis revealed both an increase of myotube fusion index (≥5 nuclei within one desmin+ myotube) and the myotube diameter when conditioned medium from mechanically loaded tendon constructs was applied. Myostatin, myosin heavy chain 7, and AXIN2 gene expressions were downregulated in myotubes treated with conditioned medium from mechanically loaded tendon constructs. However, proliferative potential (number of Ki67+ and bromodeoxyuridine+ myoblasts) did not differ between the two groups. These results indicate that tendon fibroblasts enhance myotube formation by mechanical loading-induced factors. Our finding suggests that mechanical loading affects the signaling interplay between skeletal muscle and tendon tissue and is thus important for musculoskeletal tissue development and regeneration in humans. Impact statement The interplay between satellite cells and various types of resident cells within the skeletal muscle for muscle regeneration has been extensively studied. However, even though tendon tissue is located adjacent to skeletal muscle tissue and cells in these tissues are exposed to repetitive mechanical loading together, the interaction between muscle and tendon tissues for muscle regeneration remains to be elucidated. In this study, we report that the conditioned media from engineered human tendon tissues undergoing repetitive tensile mechanical loading enhanced myotube formation. Our in vitro findings extend the fundamental understanding of the crosstalk between adjacent tissues of the muscle-tendon unit.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Meios de Cultivo Condicionados , Fibras Musculares Esqueléticas/metabolismo , Tendões , Engenharia Tecidual , Diferenciação Celular
10.
Cell Death Dis ; 13(4): 402, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461310

RESUMO

Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons' physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.


Assuntos
Autofagia , Tendinopatia , Tendões , Autofagia/fisiologia , Colágeno/metabolismo , Colágeno/fisiologia , Homeostase , Humanos , Tendinopatia/metabolismo , Tendinopatia/patologia , Tendões/metabolismo , Tendões/patologia
11.
Sci Adv ; 8(14): eabc9061, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394844

RESUMO

The circadian clock controls many aspects of physiology, but it remains undescribed whether extracellular vesicles (EVs), including exosomes, involved in cell-cell communications between tissues are regulated in a circadian pattern. We demonstrate a 24-hour rhythmic abundance of individual proteins in small EVs using liquid chromatography-mass spectrometry in circadian-synchronized tendon fibroblasts. Furthermore, the release of small EVs enriched in RNA binding proteins was temporally separated from those enriched in cytoskeletal and matrix proteins, which peaked during the end of the light phase. Last, we targeted the protein sorting mechanism in the exosome biogenesis pathway and established (by knockdown of circadian-regulated flotillin-1) that matrix metalloproteinase 14 abundance in tendon fibroblast small EVs is under flotillin-1 regulation. In conclusion, we have identified proteomic time signatures for small EVs released by tendon fibroblasts, which supports the view that the circadian clock regulates protein cargo in EVs involved in cell-cell cross-talk.

12.
Physiol Rep ; 9(21): e15077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34713978

RESUMO

Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co-cultured with cerebellar granule neurons from two litters of 7-day-old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT-PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co-culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co-culture, versus monoculture, whereas in muscle medium co-culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling.


Assuntos
Comunicação Celular , Mioblastos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Células Cultivadas , Cerebelo/citologia , Técnicas de Cocultura/métodos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Mioblastos/citologia , Miogenina/genética , Miogenina/metabolismo , Crescimento Neuronal , Ratos , Ratos Wistar , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Vimentina/genética , Vimentina/metabolismo
13.
Cell Commun Signal ; 18(1): 177, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148271

RESUMO

BACKGROUND: Fibroblasts are the powerhouses responsible for the production and assembly of extracellular matrix (ECM). Their activity needs to be tightly controlled especially within the musculoskeletal system, where changes to ECM composition affect force transmission and mechanical loading that are required for effective movement of the body. Extracellular vesicles (EVs) are a mode of cell-cell communication within and between tissues, which has been largely characterised in cancer. However, it is unclear what the role of healthy fibroblast-derived EVs is during tissue homeostasis. METHODS: Here, we performed proteomic analysis of small EVs derived from primary human muscle and tendon cells to identify the potential functions of healthy fibroblast-derived EVs. RESULTS: Mass spectrometry-based proteomics revealed comprehensive profiles for small EVs released from healthy human fibroblasts from different tissues. We found that fibroblast-derived EVs were more similar than EVs from differentiating myoblasts, but there were significant differences between tendon fibroblast and muscle fibroblast EVs. Small EVs from tendon fibroblasts contained higher levels of proteins that support ECM synthesis, including TGFß1, and muscle fibroblast EVs contained proteins that support myofiber function and components of the skeletal muscle matrix. CONCLUSIONS: Our data demonstrates a marked heterogeneity among healthy fibroblast-derived EVs, indicating shared tasks between EVs of skeletal muscle myoblasts and fibroblasts, whereas tendon fibroblast EVs could play a fibrotic role in human tendon tissue. These findings suggest an important role for EVs in tissue homeostasis of both tendon and skeletal muscle in humans. Video abstract.


Assuntos
Vesículas Extracelulares/metabolismo , Fibroblastos/patologia , Músculo Esquelético/patologia , Proteômica , Tendões/patologia , Adulto , Exossomos/metabolismo , Exossomos/ultraestrutura , Proteínas da Matriz Extracelular/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Fibrose , Humanos , Masculino , Modelos Biológicos
14.
J Proteome Res ; 19(10): 4137-4144, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32822197

RESUMO

Tendon is a highly organized, dense connective tissue that has been demonstrated to have very little turnover. In spite of the low turnover, tendon can grow in response to loading, which may take place primarily at the periphery. Tendon injuries and recurrence of injuries are common in both humans and animals in sports. It is unclear why some areas of the tendon are more susceptible to such injuries and whether this is due to intrinsic regional differences in extracellular matrix (ECM) production or tissue turnover. This study aimed to compare populations of tenocytes derived from the tendon core and periphery. Tenocytes were isolated from equine superficial digital flexor tendons (SDFTs), and the proliferation capacity was determined. ECM production was characterized by immuno- and histological staining and by liquid chromatography-mass spectrometry-based proteomics. Core and periphery SDFT cultures exhibited comparable proliferation rates and had very similar proteome profiles, but showed biological variation in collagen type I deposition. In conclusion, the intrinsic properties of tenocytes from different regions of the tendon are very similar, and other factors in the tissue may contribute to how specific areas respond to loading or injury.


Assuntos
Traumatismos dos Tendões , Tenócitos , Animais , Matriz Extracelular , Cavalos , Humanos , Proteômica , Tendões
15.
Nat Cell Biol ; 22(1): 74-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907414

RESUMO

Collagen is the most abundant secreted protein in vertebrates and persists throughout life without renewal. The permanency of collagen networks contrasts with both the continued synthesis of collagen throughout adulthood and the conventional transcriptional/translational homeostatic mechanisms that replace damaged proteins with new copies. Here, we show circadian clock regulation of endoplasmic reticulum-to-plasma membrane procollagen transport by the sequential rhythmic expression of SEC61, TANGO1, PDE4D and VPS33B. The result is nocturnal procollagen synthesis and daytime collagen fibril assembly in mice. Rhythmic collagen degradation by CTSK maintains collagen homeostasis. This circadian cycle of collagen synthesis and degradation affects a pool of newly synthesized collagen, while maintaining the persistent collagen network. Disabling the circadian clock causes abnormal collagen fibrils and collagen accumulation, which are reduced in vitro by the NR1D1 and CRY1/2 agonists SR9009 and KL001, respectively. In conclusion, our study has identified a circadian clock mechanism of protein homeostasis wherein a sacrificial pool of collagen maintains tissue function.


Assuntos
Relógios Circadianos/fisiologia , Colágeno/metabolismo , Homeostase/fisiologia , Via Secretória/fisiologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/efeitos dos fármacos , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Carbazóis/farmacologia , Colágeno/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Camundongos Transgênicos , Pirrolidinas/farmacologia , Canais de Translocação SEC/efeitos dos fármacos , Canais de Translocação SEC/metabolismo , Via Secretória/genética , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Proteínas de Transporte Vesicular/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo
16.
Eur J Cardiothorac Surg ; 57(5): 874-880, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845993

RESUMO

OBJECTIVES: A prediction model developed by Passman et al. stratifies patients' risk of postoperative atrial fibrillation (POAF) after major non-cardiac thoracic surgery using 3 simple factors (sex, age and preoperative resting heart rate). The model has neither undergone external validation nor proven to be relevant in current thoracic surgery practice. METHODS: A retrospective single-centre analysis of all patients who underwent major non-cardiac thoracic surgery (2008-2017) with prospective documentation of incidence and severity of POAF was used for external validation of Passman's derivation sample (published in 2005 with 856 patients). The model calibration was assessed by evaluating the incidence of POAF and patients' risk scores (0-6). RESULTS: A total of 2054 patients were included. Among them, POAF occurred in 164 (7.9%), compared to 147 (17.2%) in Passman's study. Differences in our sample compared to Passman's sample included mean heart rate (75.7 vs 73.7 bpm, P < 0.001), proportion of patients with hypertension (46.1 vs 29.4%, P < 0.001), proportion of extensive lung resections, particularly pneumonectomy (6.1 vs 21%, P < 0.001) and proportion of minimally invasive surgeries (56.6% vs 0%). The model demonstrated a positive correlation between risk scores and POAF incidence (risk score 1.2% vs 6.16%). CONCLUSIONS: The POAF model demonstrated good calibration in our population, despite a lower overall incidence of POAF compared to the derivation study. POAF rates were higher among patients with a higher risk score and undergoing procedures with greater intrathoracic dissection. This tool may be useful in identifying patients who are at risk of POAF when undergoing major thoracic surgery and may, therefore, benefit from targeted prophylactic therapy.


Assuntos
Fibrilação Atrial , Cirurgia Torácica , Procedimentos Cirúrgicos Torácicos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Procedimentos Cirúrgicos Torácicos/efeitos adversos
17.
J Thorac Dis ; 11(Suppl 16): S2062-S2068, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31637039

RESUMO

The use of uniportal video-assisted thoracoscopy (u-VATS) is becoming a commonly used surgical technique and can be an effective approach for the surgical treatment of many pulmonary and non-pulmonary conditions. This review article summarizes current medical evidence informing the practice of u-VATS for treating non-pulmonary conditions including hyperhidrosis, hemothorax, pleural effusion, and thymic disease.

18.
J Hand Surg Asian Pac Vol ; 24(3): 264-269, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31438788

RESUMO

Background: Thumb polydactyly is one of the commonest congenital hand differences. Traditional surgeon-based outcome scores capture outcomes mainly on bodily structure and function. Outcomes on the long-term well-being of the patients in the domains of activity and participation are not fully studied. Methods: Forty-eight thumbs in forty-five Chinese patients with radial polydactyly underwent surgical treatment at or before 3 years old were recruited. Mean follow-up was 11.6 years. Surgical outcomes were collected and compared to the normal opposite thumb. The results were compiled into the Japanese Society for Surgery of the Hand (JSSH) score, Cheng score and Tada score. Patients' activity involving hands were assessed by both objective tools and patient-reported outcome measure while their health-related quality of life (HRQoL) was assessed by Patient- and Parent-reported Pediatric Quality of Life Inventory (PedsQL). Correlations between outcomes were analysed. Results: Overall, both parents and patients themselves reported good quality of life with mean score of 86.6% and 92.1% respectively in PedsQL. The combined surgical scores ranged from 52% good or excellent results using JSSH score to 100% good result using Cheng score. None of the outcomes on bodily structure and function showed positive correlation with patient's well-being. Negative correlation was noted in total passive range of movement, active movement and Cheng score. All patients reported no activity restriction. Writing test did not show significant slowing. The operated hands had significantly poorer fine motor dexterity than normal. No significant correlation is noted between activity outcomes and PedsQL. Conclusions: Outcomes on bodily structure, function and activity showed little correlation with patients' well-being after thumb polydactyly correction. It should be careful in using or analysing patient/parent-reported outcome measures on HRQoL as outcome assessment of surgical treatment of radial polydactyly.


Assuntos
Polidactilia/cirurgia , Qualidade de Vida , Polegar/anormalidades , Polegar/cirurgia , Pré-Escolar , Estudos Transversais , Feminino , Seguimentos , Humanos , Lactente , Masculino , Destreza Motora/fisiologia , Pais , Polidactilia/fisiopatologia
19.
Curr Top Dev Biol ; 133: 309-342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30902257

RESUMO

Tendons are remarkable tissues that transmit force from muscle to bone during joint movement. They are remarkable because they withstand tensile forces that are orders of magnitude greater than can be withstood by isolated cells. The ability of the cells to survive is directly attributable to the stress shielding properties of the collagen-rich extracellular matrix of the tissue. A further remarkable feature is that the vast majority (>98%) of the collagen is never turned over; it is synthesized during embryonic through early adult development and persists for the lifetime of the person. How the collagen is synthesized, and importantly, how it is protected from fatigue failure for decades of countless loading cycles, remains a mystery. A recent discovery is that tendons are peripheral circadian clock tissues in which the expression of ~5% of the transcriptome is rhythmic during 24h. Evidence is emerging that a fraction of the total amount of collagen is synthesized and removed on a daily basis without being incorporated into the lifelong permanent collagen. This review provides some of the background, and summarizes the findings, of these latest discoveries. Detailed descriptions of tendon development, collagen synthesis and collagen fibrillogenesis can be found in excellent reviews (cited here) and will not be a major part of this review.


Assuntos
Relógios Circadianos/fisiologia , Tendões/embriologia , Tendões/fisiologia , Animais , Cronoterapia , Matriz Extracelular/metabolismo , Homeostase , Humanos , Mamíferos/fisiologia
20.
Eur J Appl Physiol ; 119(6): 1387-1394, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30923873

RESUMO

PURPOSE: The discovery of musculoskeletal tissues, including muscle, tendons, and cartilage, as peripheral circadian clocks strongly implicates their role in tissue-specific homeostasis. Age-related dampening and misalignment of the tendon circadian rhythm and its outputs may be responsible for the decline in tendon homeostasis. It is unknown which entrainment signals are responsible for the synchronization of the tendon clock to the light-dark cycle. METHODS: We sought to examine any changes in the expression levels of core clock genes (BMAL1, CLOCK, PER2, CRY1, and NR1D1) in healthy human patellar tendon biopsies obtained from three different intervention studies: increased physical activity (leg kicks for 1 h) in young, reduced activity (2 weeks immobilization of one leg) in young, and in old tendons. RESULTS: The expression level of clock genes in human tendon in vivo was very low and a high variation between individuals was found. We were thus unable to detect any differences in core clock gene expression neither after acute exercise nor immobilization. CONCLUSIONS: We are unable to find evidence for an effect of exercise or immobilization on circadian clock gene expression in human tendon samples.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Exercício Físico , Imobilização/efeitos adversos , Ligamento Patelar/metabolismo , Adulto , Idoso , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Humanos , Masculino , Ligamento Patelar/crescimento & desenvolvimento , Ligamento Patelar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...