Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1357: 231-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25646603

RESUMO

The mitochondrial genome resides in the mitochondrion of nearly all mammalian cells. It is important for energy production as it encodes 13 of the key subunits of the electron transfer chain, which generates the vast majority of cellular ATP through the process of oxidative phosphorylation. As cells establish pluripotency, they regulate their mtDNA copy number so that they possess few copies but sufficient that they can be replicated to match the differentiated cell-specific requirements for ATP derived through oxidative phosphorylation. However, the failure to strictly regulate this process prevents pluripotent cells from differentiating. We describe a series of protocols that analyze mtDNA copy number, DNA methylation within the nuclear-encoded mtDNA-specific polymerase, and gene expression of the other factors that drive replication of the mitochondrial genome. We demonstrate how to measure ATP-generating capacity through oxygen respiratory capacity and total cellular ATP and lactate levels. Finally, we also describe how to detect mtDNA variants in pluripotent and differentiating cells using next-generation sequencing protocols and how the variants can be confirmed by high-resolution melt analysis.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/citologia , Trifosfato de Adenosina/biossíntese , Células Cultivadas , Reprogramação Celular/genética , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Polimerase Dirigida por DNA/fisiologia , Expressão Gênica , Biblioteca Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microesferas , Desnaturação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Consumo de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real
2.
Methods Mol Biol ; 1330: 219-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621601

RESUMO

The mitochondrial genome has a major role to play in establishing and maintaining pluripotency. Furthermore, mitochondrial DNA (mtDNA) copy is strictly regulated during differentiation. Undifferentiated, pluripotent cells possess fewer than 300 copies of mtDNA, which establishes the mtDNA set point and promotes cell proliferation and, as a result, these cells rely on glycolysis with some support from oxidative phosphorylation (OXPHOS) for the generation of ATP. The mtDNA set point provides the starting point from which cells increase their mtDNA copy number as they differentiate into mature functional cells. Dependent on cell types, mtDNA copy number ranges from ~10 copies in sperm to several thousand in cardiomyocytes. Consequently, differentiating cell types can acquire the appropriate numbers of mtDNA copy to meet their specific requirements for ATP generated through OXPHOS. However, as reprogrammed somatic cells do not always achieve this, it is essential to analyze them for their OXPHOS potential and ability to regulate mtDNA copy number. Here, we describe how to assess mtDNA copy number in pluripotent and differentiating cells using real-time PCR protocols; assess expression of the mtDNA specific replication factors through real-time RT-PCR; identify mtDNA variants in embryonic and induced pluripotent stem cells; determine DNA methylation patterns of the mtDNA-specific replication factors; and assess mitochondrial OXPHOS capacity.


Assuntos
DNA Mitocondrial , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Metilação de DNA , Células-Tronco Embrionárias/citologia , Dosagem de Genes , Expressão Gênica , Biblioteca Gênica , Genes Mitocondriais , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
3.
Acta Neuropathol Commun ; 2: 1, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383468

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. RESULTS: Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. CONCLUSIONS: These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , DNA Mitocondrial/genética , Variação Genética/genética , Glioblastoma/genética , Glioblastoma/patologia , Animais , Antimetabólitos/farmacologia , Encéfalo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , DNA Mitocondrial/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise/efeitos dos fármacos , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Células-Tronco Neurais/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Zalcitabina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...