Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 94: 103147, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547665

RESUMO

Three-dimensional (3D) ultrasound imaging has contributed to our understanding of fetal developmental processes by providing rich contextual information of the inherently 3D anatomies. However, its use is limited in clinical settings, due to the high purchasing costs and limited diagnostic practicality. Freehand 2D ultrasound imaging, in contrast, is routinely used in standard obstetric exams, but inherently lacks a 3D representation of the anatomies, which limits its potential for more advanced assessment. Such full representations are challenging to recover even with external tracking devices due to internal fetal movement which is independent from the operator-led trajectory of the probe. Capitalizing on the flexibility offered by freehand 2D ultrasound acquisition, we propose ImplicitVol to reconstruct 3D volumes from non-sensor-tracked 2D ultrasound sweeps. Conventionally, reconstructions are performed on a discrete voxel grid. We, however, employ a deep neural network to represent, for the first time, the reconstructed volume as an implicit function. Specifically, ImplicitVol takes a set of 2D images as input, predicts their locations in 3D space, jointly refines the inferred locations, and learns a full volumetric reconstruction. When testing natively-acquired and volume-sampled 2D ultrasound video sequences collected from different manufacturers, the 3D volumes reconstructed by ImplicitVol show significantly better visual and semantic quality than the existing interpolation-based reconstruction approaches. The inherent continuity of implicit representation also enables ImplicitVol to reconstruct the volume to arbitrarily high resolutions. As formulated, ImplicitVol has the potential to integrate seamlessly into the clinical workflow, while providing richer information for diagnosis and evaluation of the developing brain.


Assuntos
Algoritmos , Imageamento Tridimensional , Humanos , Feminino , Gravidez , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Ultrassonografia Pré-Natal , Encéfalo/diagnóstico por imagem
2.
Med Image Anal ; 70: 101998, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711741

RESUMO

In fetal neurosonography, aligning two-dimensional (2D) ultrasound scans to their corresponding plane in the three-dimensional (3D) space remains a challenging task. In this paper, we propose a convolutional neural network that predicts the position of 2D ultrasound fetal brain scans in 3D atlas space. Instead of purely supervised learning that requires heavy annotations for each 2D scan, we train the model by sampling 2D slices from 3D fetal brain volumes, and target the model to predict the inverse of the sampling process, resembling the idea of self-supervised learning. We propose a model that takes a set of images as input, and learns to compare them in pairs. The pairwise comparison is weighted by the attention module based on its contribution to the prediction, which is learnt implicitly during training. The feature representation for each image is thus computed by incorporating the relative position information to all the other images in the set, and is later used for the final prediction. We benchmark our model on 2D slices sampled from 3D fetal brain volumes at 18-22 weeks' gestational age. Using three evaluation metrics, namely, Euclidean distance, plane angles and normalized cross correlation, which account for both the geometric and appearance discrepancy between the ground-truth and prediction, in all these metrics, our model outperforms a baseline model by as much as 23%, when the number of input images increases. We further demonstrate that our model generalizes to (i) real 2D standard transthalamic plane images, achieving comparable performance as human annotations, as well as (ii) video sequences of 2D freehand fetal brain scans.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Idade Gestacional , Humanos , Neuroimagem , Ultrassonografia
3.
IEEE Trans Med Imaging ; 39(5): 1380-1391, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31647422

RESUMO

Generalized nucleus segmentation techniques can contribute greatly to reducing the time to develop and validate visual biomarkers for new digital pathology datasets. We summarize the results of MoNuSeg 2018 Challenge whose objective was to develop generalizable nuclei segmentation techniques in digital pathology. The challenge was an official satellite event of the MICCAI 2018 conference in which 32 teams with more than 80 participants from geographically diverse institutes participated. Contestants were given a training set with 30 images from seven organs with annotations of 21,623 individual nuclei. A test dataset with 14 images taken from seven organs, including two organs that did not appear in the training set was released without annotations. Entries were evaluated based on average aggregated Jaccard index (AJI) on the test set to prioritize accurate instance segmentation as opposed to mere semantic segmentation. More than half the teams that completed the challenge outperformed a previous baseline. Among the trends observed that contributed to increased accuracy were the use of color normalization as well as heavy data augmentation. Additionally, fully convolutional networks inspired by variants of U-Net, FCN, and Mask-RCNN were popularly used, typically based on ResNet or VGG base architectures. Watershed segmentation on predicted semantic segmentation maps was a popular post-processing strategy. Several of the top techniques compared favorably to an individual human annotator and can be used with confidence for nuclear morphometrics.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Núcleo Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...