Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 76(3): 713-23, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26719531

RESUMO

Deregulation of the ß-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and ß-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate ß-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate ß-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited ß-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of ß-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Trombospondinas/metabolismo , beta Catenina/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Trombospondinas/biossíntese , Trombospondinas/genética , Trombospondinas/imunologia , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...