Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33059022

RESUMO

The effects of high external ammonia (HEA) exposure on breathing and the potential involvement of ammonia transporting Rh proteins in ammonia sensing were assessed in larval and adult zebrafish. Acute exposure of adults to either 250 or 500 µM (NH4)2SO4 caused increases in ventilation amplitude (AVENT) without affecting frequency (fVENT), resembling the ventilatory response to hypercapnia rather than hypoxia, during which fVENT was increased exclusively. The hyperventilatory response to HEA was prevented by hyperoxia, indicating that control of breathing through ammonia sensing is likely secondary to O2 chemoreception. Neuroepithelial cells (NECs) isolated from gill filaments exhibited a significant increase of intracellular [Ca2+] in response to 1 mM NH4Cl but this response was small (roughly 30%) compared to the response to hypercapnia (37.5 mmHg; ~800% increase). Immunohistochemistry (IHC) failed to reveal the presence of Rh proteins (Rhcgb, Rhbg or Rhag) in gill filament NECs. Knockout of rhcgb did not affect the ventilatory response of adults to HEA. Larvae at 4 days post fertilization (dpf) responded to HEA with increases in fVENT (AVENT was not measured). The hyperventilatory response of larvae to HEA was attenuated (60% reduction) after treatment from 0 to 4 dpf with the sympathetic neurotoxin 6-hydroxydopamine. In larvae, Rhcgb, Rhbg and Rhag were undetectable by IHC in cutaneous NECs yet the fVENT to HEA following Rhbg knockdown was slightly (22%) attenuated. Thus, the hyperventilatory response to external ammonia in adult zebrafish, while apparently initiated by activation of NECs, does not require Rhcgb, nor is the entry of ammonia into NECs reliant on other Rh proteins. The lack of colocalization of Rh proteins with NECs suggests that the entry of ammonia into NECs in larvae, also is not facilitated by this family of ammonia channels.


Assuntos
Amônia/farmacologia , Hiperventilação/fisiopatologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Peixe-Zebra/fisiologia , Amônia/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Brânquias/citologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Imuno-Histoquímica , Larva/citologia , Larva/efeitos dos fármacos , Larva/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
J Physiol ; 592(14): 3075-88, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24756639

RESUMO

The current study investigated the role of hydrogen sulphide (H2S) in oxygen sensing, intracellular signalling and promotion of ventilatory responses to hypoxia in adult and larval zebrafish (Danio rerio). Both larval and adult zebrafish exhibited a dose-dependent increase in ventilation to sodium sulphide (Na2S), an H2S donor. In vertebrates, cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) are enzymes that catalyse the endogenous production of H2S. In adult zebrafish, inhibition of both CBS and CSE with aminooxyacetate (AOA) and propargyl glycine (PPG) blunted or abolished the hypoxic hyperventilation, and the addition of Na2S to the water partially rescued the effects of inhibiting endogenous H2S production. In zebrafish larvae (4 days post-fertilization), gene knockdown of either CBS or CSE using morpholinos attenuated the hypoxic ventilatory response. Furthermore, the intracellular calcium concentration of isolated neuroepithelial cells (NECs), which are putative oxygen chemoreceptors, increased significantly when these cells were exposed to 50 µm Na2S, supporting a role for H2S in Ca(2+)-evoked neurotransmitter release in these cells. Finally, immunohistochemical labelling showed that NECs dissociated from adult gill contained CBS and CSE, whereas cutaneous NECs in larval zebrafish expressed only CSE. Taken together, these data show that H2S can be produced in the putative oxygen-sensing cells of zebrafish, the NECs, in which it appears to play a pivotal role in promoting the hypoxic ventilatory response.


Assuntos
Sulfeto de Hidrogênio , Hipóxia/fisiopatologia , Respiração , Alcinos/farmacologia , Ácido Amino-Oxiacético/farmacologia , Animais , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/fisiologia , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/fisiologia , Glicina/análogos & derivados , Glicina/farmacologia , Células Neuroepiteliais/fisiologia , Oxigênio/fisiologia , Sulfetos/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...