Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(2): 761-773, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696157

RESUMO

In this work, we report on defects generation in TiO2 inverse opal (IO) nanostructures by electrochemical reduction in order to increase photocatalytic activity and improve photoelectrochemical (PEC) water splitting performance. Macroporous structures, such as inverse opals, have attracted a lot of attention for energy-related applications because of their large surface area, interconnected pores, and ability to enhance light-matter interaction. Photocurrent density of electrochemically reduced TiO2-IO increased by almost 4 times, compared to pristine TiO2-IO photoelectrodes. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the presence of oxygen vacancies in electrochemically reduced TiO2-IO photoelectrodes. Oxygen vacancies extend the absorption of TiO2 from the UV to visible region. The incident photon-to-current efficiency (IPCE) increased by almost 3 times in the absorption (UV) region of TiO2 and slightly in the visible region. Impedance studies show improved electrical conductivity, longer photogenerated electron lifetime, and a negative shift of the flatband potential, which are attributed to oxygen vacancies acting as electron donors. The Fermi level shifts to be closer to the conduction band edge of TiO2-IO.

2.
ACS Appl Mater Interfaces ; 10(28): 23766-23773, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29939003

RESUMO

Photoelectrolysis of water using solar energy into storable and environment-friendly chemical fuel in the form of hydrogen provides a potential solution to address the environmental concerns and fulfill future energy requirements in a sustainable manner. Achieving efficient and spontaneous hydrogen evolution in water using solar light as the only energy input is a highly desirable but a difficult target. In this work, we report perovskite solar cell integrated CdS-based photoanode for unbiased photoelectrochemical hydrogen evolution. An integrated tandem device consisting of mesoporous CdS/TiO2 photoanode paired with a triple-cation perovskite (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) solar cell is developed via a facile fabrication route. The proposed photovoltaic integrated photoanode presents an efficient tandem configuration with high optical transparency to long-wavelength photons and strong photoelectrochemical conversions from short-wavelength photons. On the basis of this integrated tandem device, an unbiased photocurrent density of 7.8 mA/cm2 is demonstrated under AM1.5G illumination.

3.
Nanotechnology ; 29(4): 045403, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29192894

RESUMO

The research interest in photoelectrochemical (PEC) water splitting is ever growing due to its potential to contribute towards clean and portable energy. However, the lack of low energy band gap materials with high photocorrosion resistance is the primary setback inhibiting this technology from commercialisation. The ternary alloy InGaN shows promise to meet the photoelectrode material requirements due to its high chemical stability and band gap tunability. The band gap of InGaN can be modulated from the UV to IR regions by adjusting the In concentration so as to absorb the maximum portion of the solar spectrum. This paper reports on the influence of In concentration on the PEC properties of planar and nanopillar (NP) InGaN/GaN multi-quantum well (MQW) photoanodes, where NPs were fabricated using a top-down approach. Results show that changing the In concentration, while having a minor effect on the PEC performance of planar MQWs, has an enormous impact on the PEC performance of NP MQWs, with large variations in the photocurrent density observed. Planar photoanodes containing MQWs generate marginally lower photocurrents compared to photoanodes without MQWs when illuminated with sunlight. NP MQWs with 30% In generated the highest photocurrent density of 1.6 mA cm-2, 4 times greater than that of its planar counterpart and 1.8 times greater than that of the NP photoanode with no MQWs. The InGaN/GaN MQWs also slightly influenced the onset potential of both the planar and NP photoanodes. Micro-photoluminescence, diffuse reflectance spectroscopy and IPCE measurements are used to explain these results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...