Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2308746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126622

RESUMO

Chirality is a fundamental property of nature with relevance in biochemistry and physics, particularly in the field of catalysis. Understanding the mechanisms underlying chirality transfer is crucial for advancing the knowledge of chiral-related catalysis. Chiral quantum materials with intriguing chirality-dependent electronic properties, such as spin-orbital coupling (SOC) and exotic spin/orbital angular momentum (SAM/OAM), open novel avenues for linking solid-state topologies with chiral catalysis. In this review, the growth of topological homochiral crystals (THCs) is described, and their applications in heterogeneous catalysis, including hydrogen evolution reaction (HER), oxygen electrocatalysis, and asymmetric catalysis are summarized. A possible link between chirality-dependent electronic properties and heterogeneous catalysis is discussed. Finally, existing challenges in this field are highlighted, and a brief outlook on the impact of THCs on the overarching chemical-physical research is presented.

2.
Innovation (Camb) ; 4(2): 100399, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36923023

RESUMO

The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetization re-orientation from easy axes to hard ones in magnetic field, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic state and establishes a novel manner to engineer the magneto-transport behaviors of correlated electrons for future topological spintronics.

3.
Nat Commun ; 13(1): 273, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022418

RESUMO

The Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.

4.
Mater Horiz ; 9(2): 748-755, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34881773

RESUMO

Superhard semiconductors have been long sought after for electronic device applications enduring extreme conditions, such as astronautics, due to their intrinsic toughness, high thermal and chemical stability. Here, we report the superhard p-type semiconductor Al2.69B50 single crystal with the determined Vickers hardness of ∼40.5 GPa under the load of 0.49 N, which is one of the hardest semiconductor compounds that have been ever found. With the direct band gap of 2.3 eV, Al2.69B50 exhibits excellent optical transmittance (>90%), covering the visible range from 459 nm to 760 nm and part of the infrared range, and also shows the high intensity of the photon emission in the visible light. Al2.69B50 is very stable, thermally and chemically, with an ultra-low density of ∼2.52 g cm-3, allowing for further extension of its applications. Such an assembly of various excellent properties within one material has great implication for high power electronic design and applications.

5.
Sci Adv ; 7(52): eabl4432, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936458

RESUMO

A spin-triplet superconductor can harbor Majorana bound states that can be used in topological quantum computing. Recently, K2Cr3As3 and its variants with critical temperature Tc as high as 8 kelvin have emerged as a new class of superconductors with ferromagnetic spin fluctuations. Here, we report a discovery in K2Cr3As3 single crystal that the spin susceptibility measured by 75As Knight shift below Tc is unchanged with the magnetic field H0 applied in the ab plane but vanishes toward zero temperature when H0 is along the c axis, which unambiguously establishes this compound as a spin-triplet superconductor described by a vector order parameter d→ parallel to the c axis. Combining with point nodal gap, we show that K2Cr3As3 is a new platform for the study of topological superconductivity and its possible technical application.

6.
Phys Rev Lett ; 126(15): 155701, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929239

RESUMO

The layered crystal of EuSn_{2}As_{2} has a Bi_{2}Te_{3}-type structure in rhombohedral (R3[over ¯]m) symmetry and has been confirmed to be an intrinsic magnetic topological insulator at ambient conditions. Combining ab initio calculations and in situ x-ray diffraction measurements, we identify a new monoclinic EuSn_{2}As_{2} structure in C2/m symmetry above ∼14 GPa. It has a three-dimensional network made up of honeycomblike Sn sheets and zigzag As chains, transformed from the layered EuSn_{2}As_{2} via a two-stage reconstruction mechanism with the connecting of Sn-Sn and As-As atoms successively between the buckled SnAs layers. Its dynamic structural stability has been verified by phonon mode analysis. Electrical resistance measurements reveal an insulator-metal-superconductor transition at low temperature around 5 and 15 GPa, respectively, according to the structural conversion, and the superconductivity with a T_{C} value of ∼4 K is observed up to 30.8 GPa. These results establish a high-pressure EuSn_{2}As_{2} phase with intriguing structural and electronic properties and expand our understandings about the layered magnetic topological insulators.

7.
Nat Commun ; 12(1): 2052, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824343

RESUMO

Topological crystalline insulators (TCIs) are insulating electronic states with nontrivial topology protected by crystalline symmetries. Recently, theory has proposed new classes of TCIs protected by rotation symmetries [Formula: see text], which have surface rotation anomaly evading the fermion doubling theorem, i.e., n instead of 2n Dirac cones on the surface preserving the rotation symmetry. Here, we report the first realization of the [Formula: see text] rotation anomaly in a binary compound SrPb. Our first-principles calculations reveal two massless Dirac fermions protected by the combination of time-reversal symmetry [Formula: see text] and [Formula: see text] on the (010) surface. Using angle-resolved photoemission spectroscopy, we identify two Dirac surface states inside the bulk band gap of SrPb, confirming the [Formula: see text] rotation anomaly in the new classes of TCIs. The findings enrich the classification of topological phases, which pave the way for exploring exotic behavior of the new classes of TCIs.

8.
Nat Commun ; 11(1): 3985, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778652

RESUMO

The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined optical spectroscopy and theoretical calculation study on the strength and effect of electronic correlations in a magnet Co3Sn2S2. The electronic kinetic energy estimated from our optical data is about half of that obtained from single-particle ab initio calculations in the ferromagnetic ground state, which indicates intermediate-strength electronic correlations in this system. Furthermore, comparing the energy and side-slope ratios between the interband-transition peaks at high energies in the experimental and single-particle-calculation-derived optical conductivity spectra with the bandwidth-renormalization factors obtained by many-body calculations enables us to estimate the Coulomb-interaction strength (U âˆ¼ 4 eV) in Co3Sn2S2. Besides, a sharp experimental optical conductivity peak at low energy, which is absent in the single-particle-calculation-derived spectrum but is consistent with the optical conductivity peaks obtained by many-body calculations with U âˆ¼ 4 eV, indicates that an electronic band connecting the two Weyl cones is flattened by electronic correlations and emerges near the Fermi energy in Co3Sn2S2. Our work paves the way for exploring flat-band-generated quantum phenomena in WSMs.

9.
Phys Rev Lett ; 125(4): 046401, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32794798

RESUMO

We use scanning tunneling microscopy to elucidate the atomically resolved electronic structure in the strongly correlated kagome Weyl antiferromagnet Mn_{3}Sn. In stark contrast to its broad single-particle electronic structure, we observe a pronounced resonance with a Fano line shape at the Fermi level resembling the many-body Kondo resonance. We find that this resonance does not arise from the step edges or atomic impurities but the intrinsic kagome lattice. Moreover, the resonance is robust against the perturbation of a vector magnetic field, but broadens substantially with increasing temperature, signaling strongly interacting physics. We show that this resonance can be understood as the result of geometrical frustration and strong correlation based on the kagome lattice Hubbard model. Our results point to the emergent many-body resonance behavior in a topological kagome magnet.

10.
Adv Mater ; 32(14): e1907565, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32091144

RESUMO

Parity-time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realization of magnetic topological DSMs remains a major issue in topological material research. Here, combining angle-resolved photoemission spectroscopy with density functional theory calculations, it is ascertained that band inversion induces a topologically nontrivial ground state in EuCd2 As2 . As a result, ideal magnetic Dirac fermions with simplest double cone structure near the Fermi level emerge in the antiferromagnetic (AFM) phase. The magnetic order breaks time reversal symmetry, but preserves inversion symmetry. The double degeneracy of the Dirac bands is protected by a combination of inversion, time-reversal, and an additional translation operation. Moreover, the calculations show that a deviation of the magnetic moments from the c-axis leads to the breaking of C3 rotation symmetry, and thus, a small bandgap opens at the Dirac point in the bulk. In this case, the system hosts a novel state containing three different types of topological insulator: axion insulator, AFM topological crystalline insulator (TCI), and higher order topological insulator. The results provide an enlarged platform for the quest of topological Dirac fermions in a magnetic system.

11.
Natl Sci Rev ; 7(9): 1468-1475, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691543

RESUMO

WTe2, as a type-II Weyl semimetal, has 2D Fermi arcs on the (001) surface in the bulk and 1D helical edge states in its monolayer. These features have recently attracted wide attention in condensed matter physics. However, in the intermediate regime between the bulk and monolayer, the edge states have not been resolved owing to its closed band gap which makes the bulk states dominant. Here, we report the signatures of the edge superconductivity by superconducting quantum interference measurements in multilayer WTe2 Josephson junctions and we directly map the localized supercurrent. In thick WTe2 ([Formula: see text], the supercurrent is uniformly distributed by bulk states with symmetric Josephson effect ([Formula: see text]). In thin WTe2 (10 nm), however, the supercurrent becomes confined to the edge and its width reaches up to [Formula: see text]and exhibits non-symmetric behavior [Formula: see text]. The ability to tune the edge domination by changing thickness and the edge superconductivity establishes WTe2 as a promising topological system with exotic quantum phases and a rich physics.

12.
Phys Rev Lett ; 123(9): 096601, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524447

RESUMO

At sufficiently low temperatures, many quantum effects, such as weak localization, electron-electron interaction (EEI), and Kondo screening, can lead to pronounced corrections to the semiclassical electron transport. Although low temperature corrections to longitudinal resistivity, ordinary Hall resistivity, or anomalous Hall (AH) resistivity are often observed, the corrections to three of them have never been simultaneously detected in a single sample. Here, we report on the observation of sqrt[T]-type temperature dependences of the longitudinal, ordinary Hall and AH resistivities at temperatures down to at least 20 mK in n-type HgCr_{2}Se_{4}, a half-metallic ferromagnetic semiconductor that can reach extremely low carrier densities. For the samples with moderate disorder, the longitudinal and ordinary Hall conductivities can be satisfactorily described by the EEI theory developed by Altshuler et al., whereas the large corrections to AH conductivity are inconsistent with the existing theory, which predicts vanishing and finite corrections to AH conductivity for EEI and weak localization, respectively.

13.
J Phys Condens Matter ; 31(27): 275702, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30947161

RESUMO

ZrCo2Sn is a potential candidate as a Weyl semimetal with a ferromagnetic ground state, and Nb-doping is expected to shift the Weyl points to the vicinity of Fermi level. We successfully synthesized a series of Zr1-x Nb x Co2Sn single crystals with various concentrations of Nb (x = 0, 0.1, 0.2, 0.275, 0.4, 0.5). All samples have a spinel structure and the lattice constant decrease as the Nb doping level increases. The magnetization and transport measurements suggest that the ferromagnetic ordering temperature can be strongly modified by the Nb doping. When x increases, the Curie temperature decreases significantly, accompanied by a change from metal-like to semiconductor-like behavior. There is a crossover for positive to negative MR at a temperature between 30 K to 50 K. In constant, the magnitude of the anomalous Hall resistance increases monotonously with decreasing temperature.

14.
Nano Lett ; 18(12): 7962-7968, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30403355

RESUMO

Due to the nontrivial topological band structure in type II Weyl semi-metal tungsten ditelluride (WTe2), unconventional properties may emerge in its superconducting phase. While realizing intrinsic superconductivity has been challenging in the type II Weyl semi-metal WTe2, the proximity effect may open an avenue for the realization of superconductivity. Here, we report the observation of proximity-induced superconductivity with a long coherence length along the c axis in WTe2 thin flakes based on a WTe2/NbSe2 van der Waals heterostructure. Interestingly, we also observe anomalous oscillations of the differential resistance during the transition from the superconducting to the normal state. Theoretical calculations show excellent agreement with experimental results, revealing that such a subgap anomaly is the intrinsic property of WTe2 in superconducting state induced by the proximity effect. Our findings enrich the understanding of the superconducting phase of type II Weyl semi-metals and pave the way for their future applications in topological quantum computing.

15.
ACS Nano ; 12(7): 7185-7196, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901987

RESUMO

The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe2, in a van der Waals hybrid structure obtained by mechanically transferring NbSe2 onto various thicknesses of WTe2. When the WTe2 thickness ( tWTe2) reaches 21 nm, the superconducting transition occurs around the critical temperature ( Tc) of NbSe2 with a gap amplitude (Δp) of 0.38 meV and an unexpected ultralong proximity length ( lp) up to 7 µm. With the thicker 42 nm WTe2 layer, however, the proximity effect yields Tc ≈ 1.2 K, Δp = 0.07 meV, and a short lp of less than 1 µm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe2 superconducting one when tWTe2 is less than 30 nm and then decreases quickly as tWTe2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

16.
Nat Commun ; 8(1): 659, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939864

RESUMO

Topological states emerge at the boundary of solids as a consequence of the nontrivial topology of the bulk. Recently, theory predicts a topological edge state on single layer transition metal dichalcogenides with 1T' structure. However, its existence still lacks experimental proof. Here, we report the direct observations of the topological states at the step edge of WTe2 by spectroscopic-imaging scanning tunneling microscopy. A one-dimensional electronic state residing at the step edge of WTe2 is observed, which exhibits remarkable robustness against edge imperfections. First principles calculations rigorously verify the edge state has a topological origin, and its topological nature is unaffected by the presence of the substrate. Our study supports the existence of topological edge states in 1T'-WTe2, which may envision in-depth study of its topological physics and device applications.Two-dimensional topological insulators support edge conduction electrons but its realization in real materials is rare. Here, Peng et al. report the direct observation of topological states at the step edge of WTe2.

17.
Sci Adv ; 3(5): e1602415, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508059

RESUMO

Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state, in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.

18.
Nat Commun ; 7: 13833, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982036

RESUMO

Dirac materials exhibit intriguing low-energy carrier dynamics that offer a fertile ground for novel physics discovery. Of particular interest is the interplay of Dirac carriers with other quantum phenomena such as magnetism. Here we report on a two-magnon Raman scattering study of AMnBi2 (A=Ca, Sr), a prototypical magnetic Dirac system comprising alternating Dirac carrier and magnetic layers. We present the first accurate determination of the exchange energies in these compounds and, by comparison with the reference compound BaMn2Bi2, we show that the Dirac carrier layers in AMnBi2 significantly enhance the exchange coupling between the magnetic layers, which in turn drives a charge-gap opening along the Dirac locus. Our findings break new grounds in unveiling the fundamental physics of magnetic Dirac materials, which offer a novel platform for probing a distinct type of spin-Fermion interaction. The results also hold great promise for applications in magnetic Dirac devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...