Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cartilage ; 13(3): 19476035221109226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818290

RESUMO

OBJECTIVE: The objective of this study was to determine the matrix metalloproteinase-10 (MMP-10) expression pattern and to assess how it contributes to endochondral osteogenesis in Kashin-Beck disease (KBD). DESIGN: The cartilages of KBD patients, Sprague-Dawley rats fed with selenium (Se)-deficient diet and/or T-2 toxin, and ATDC5 cells were used in this study. ATDC5 cells were induced into hypertrophic chondrocytes using a 1% insulin-transferrin-selenium (ITS) culture medium for 21 days. The expressions of MMP-10 in the cartilages were visualized by immunohistochemistry. The messenger RNA (mRNA) and protein expression levels were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting. MMP-10 short hairpin RNA (shRNA) was transfected into hypertrophic chondrocytes to knock down the gene expression of MMP-10. Meanwhile, the cell death of MMP-10-knockdown chondrocyte was detected using flow cytometry. RESULTS: The expression of MMP-10 was decreased in the growth plates of children with KBD. A decreased expression of MMP-10 also was observed in the growth plates of rats fed with an Se-deficient diet and/or T-2 toxin exposure. The mRNA and protein expression levels of MMP-10 increased during the chondrogenic differentiation of ATDC5 cells. MMP-10 knockdown in hypertrophic chondrocytes significantly decreased the gene and protein expression of collagen type II (Col II), Col X, Runx2, and MMP-13. Besides, the percentage of cell apoptosis was significantly increased after MMP-10 knockdown in hypertrophic chondrocytes. CONCLUSION: MMP-10 deficiency disrupts chondrocyte terminal differentiation and induces the chondrocyte's death, which impairs endochondral osteogenesis in the pathogenesis of KBD.


Assuntos
Doença de Kashin-Bek , Metaloproteinase 10 da Matriz , Osteoartrite , Animais , Condrócitos/metabolismo , Humanos , Hipertrofia/metabolismo , Hipertrofia/patologia , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 10 da Matriz/metabolismo , Camundongos , Osteoartrite/metabolismo , Osteogênese , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Selênio , Toxina T-2
2.
Cartilage ; 13(1_suppl): 809S-817S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34130517

RESUMO

PURPOSE: To explore the relationship between insulin-like growth factor (IGF)-1R expression and the pathological progression of Kashin-Beck disease (KBD). DESIGN: KBD cartilage samples were collected from 5 patients. Additionally, T-2 toxin was administered to rats fed a selenium (Se)-deficient diet, and their knee joints were collected. Human C28/I2 chondrocytes and mouse hypertrophic ATDC5 chondrocytes were cultured in vitro and treated with T-2 toxin and Se supplementation. Subsequently, the cultured human and mouse chondrocytes were treated with the IGF-1R inhibitor, picropodophyllin. Chondrocyte death and caspase-3 activity were analyzed using flow cytometry and a specific kit, respectively. Protein and mRNA expression levels of IGF-1R and matrix molecules were measured using immunohistochemistry, western blotting, and quantitative real-time reverse transcription-polymerase chain reaction analyses. RESULTS: The cartilages from patients with KBD and T-2 toxin-treated rats on a Se-deficient diet showed significantly decreased expression of IGF-1R compared to cartilages from controls. T-2 toxin decreased IGF-1R mRNA and protein levels in both C28/I2 and hypertrophic ATDC5 chondrocytes in a dose-dependent manner; however, Se supplementation reduced the decrease of IGF-1R induced by T-2 toxin. Furthermore, inhibition of IGF-1R resulted in chondrocyte death of C28/I2 and hypertrophic ATDC5 chondrocytes, as well as decreased type II collagen expression and increased MMP-13 expression at the mRNA and protein levels. CONCLUSION: Downregulation of IGF-1R was associated with KBD cartilage destruction. Therefore, inhibition of IGF-1R may mediate chondrocyte death and extracellular matrix degeneration related to the pathological progression of KBD.


Assuntos
Cartilagem Articular , Condrócitos , Fator de Crescimento Insulin-Like I/genética , Doença de Kashin-Bek/patologia , Animais , Regulação para Baixo , Matriz Extracelular , Humanos , Doença de Kashin-Bek/genética , Camundongos , RNA Mensageiro , Ratos , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...