Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0198619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912878

RESUMO

Mitochondrial dysfunction leads to the accumulation of reactive oxygen species (ROS) which is associated with cellular dysfunction, disease etiology, and senescence. Here, we used the eukaryotic model Saccharomyces cerevisiae, commonly studied for cellular aging, to demonstrate how defective mitochondrial function affects yeast replicative lifespan (RLS). We show that RLS of respiratory-deficient cells decreases significantly, indicating that the maintenance of RLS requires active respiration. The shortening of RLS due to mitochondrial dysfunction was not related to the accumulation of extrachromosomal ribosomal DNA circles, a well-known cause of aging in yeast. Instead, intracellular ROS and oxidatively damaged proteins increased in respiratory-deficient mutants. We show that, while the protein kinase A activity is not elevated, ROS generation in respiratory-deficient cells depends on RAS signaling pathway. The ER-localized NADPH oxidase Yno1 also played a role in producing ROS. Our data suggest that a severe defect in mitochondrial respiration accelerates cellular aging by disturbing protein homeostasis in yeast.


Assuntos
Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Envelhecimento/metabolismo , Respiração Celular , Retículo Endoplasmático/metabolismo , Longevidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
2.
Free Radic Biol Med ; 101: 424-433, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27838435

RESUMO

Reactive oxygen species (ROS)-mediated DNA adducts as well as DNA strand breaks are highly mutagenic leading to genomic instability and tumorigenesis. DNA damage repair pathways and oxidative stress response signaling have been proposed to be highly associated, but the underlying interaction remains unknown. In this study, we employed mutant strains lacking Rad51, the homolog of E. coli RecA recombinase, and Yap1 or Skn7, two major transcription factors responsive to ROS, to examine genetic interactions between double-strand break (DSB) repair proteins and cellular redox regulators in budding yeast Saccharomyces cerevisiae. Abnormal expression of YAP1 or SKN7 aggravated the mutation rate of rad51 mutants and their sensitivity to DSB- or ROS-generating reagents. Rad51 deficiency exacerbated genome instability in the presence of increased levels of ROS, and the accumulation of DSB lesions resulted in elevated intracellular ROS levels. Our findings suggest that evident crosstalk between DSB repair pathways and ROS signaling proteins contributes to cell survival and maintenance of genome integrity in response to genotoxic stress.


Assuntos
Reparo do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Peróxido de Hidrogênio/farmacologia , Taxa de Mutação , Estresse Oxidativo , Paraquat/farmacologia , Rad51 Recombinase/deficiência , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
Biochem Biophys Res Commun ; 467(4): 657-63, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26498530

RESUMO

Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates.


Assuntos
Estresse Oxidativo , Saccharomyces cerevisiae/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sobrevivência Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Trealose/metabolismo
4.
FEBS Lett ; 589(18): 2409-16, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26188548

RESUMO

Ugp1, a UDP-glucose pyrophosphorylase, is essential for various cellular activities in Saccharomyces cerevisiae because its product, UDP-glucose, is a sole glucosyl donor in several metabolic pathways. Here, we report that Msn2/4 play a crucial role in the regulation of UGP1 expression. Msn2/4 bound to three stress response elements in the UGP1 promoter in a protein kinase A (PKA)-dependent manner. Several stresses induced UGP1 transcription, suggesting that the regulation of UGP1 mediated by Msn2/4 is involved in general stress response. Furthermore, the phosphate response (PHO) pathway also controlled Msn2/4-dependent regulation of UGP1, providing a novel link between the PKA and PHO pathways. Our data suggest that signals of the PKA, PHO and stress response pathways regulate UGP1 expression via Msn2/4 in S. cerevisiae.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
5.
Genome Res ; 23(4): 736-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403034

RESUMO

The definition of protein-protein interactions (PPIs) in the natural cellular context is essential for properly understanding various biological processes. So far, however, most large-scale PPI analyses have not been performed in the natural cellular context. Here, we describe the construction of a Saccharomyces cerevisiae fusion library in which each endogenous gene is C-terminally tagged with the N-terminal fragment of Venus (VN) for a genome-wide bimolecular fluorescence complementation assay, a powerful technique for identifying PPIs in living cells. We illustrate the utility of the VN fusion library by systematically analyzing the interactome of the small ubiquitin-related modifier (SUMO) and provide previously unavailable information on the subcellular localization, types, and protease dependence of SUMO interactions. Our data set is highly complementary to the existing data sets and represents a useful resource for expanding the understanding of the physiological roles of SUMO. In addition, the VN fusion library provides a useful research tool that makes it feasible to systematically analyze PPIs in the natural cellular context.


Assuntos
Estudo de Associação Genômica Ampla , Mapeamento de Interação de Proteínas , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Leveduras/genética , Leveduras/metabolismo , Ciclo Celular/genética , Biologia Computacional/métodos , Biblioteca Gênica , Ordem dos Genes , Teste de Complementação Genética , Estudo de Associação Genômica Ampla/métodos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...