Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 39(2): 157-170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37038871

RESUMO

Selenium nanoparticles (SeNPs) can be biosynthesized by most Lactic acid bacteria thereby converting toxic sodium into SeNPs. However, few studies have reported the antimicrobial activity of biogenic SeNPs against Pseudomonas fluorescens which are the main species of psychrotrophic bacteria in raw milk. This study reported the synthesis and characterization of SeNPs from Lactobacillus casei ZK-AS 1.1482, and the antimicrobial mechanism against P. fluorescens ATCC 13525. The synthesized SeNPs were amorphous with sizes ranging from 52 to 103 nm. Fourier transform infrared spectroscopy (FT-IR) spectra showed the presence of proteins, polysaccharides, and lipids on the surface of particles, which evidently stabilized the SeNPs structure and morphology. Energy-dispersive X-ray (EDX) analysis revealed that the nanoparticles contained selenium. In addition, the minimal inhibitory concentration (MIC) of SeNPs against P. fluorescens ATCC 13525 was 0.1 mg ml-1 and the biofilm inhibition rate was 43.52 ± 0.26%. SeNPs decreased the number of living bacteria observed by confocal laser scanning microscopy (CLSM). Meanwhile, after SeNPs treatment, the intracellular adenosine triphosphate (ATP) concentration and antioxidant enzyme activity decreased, the content of reactive oxygen species (ROS) and the malondialdehyde (MDA) content increased, and lipid peroxidation intensified. Real-time fluorescence quantitative PCR (RT-qPCR) assay showed that the expression of flgA, luxR, lapD, MCP, cheA, c-di-GMP, phoB, and pstC gene were down-regulated after SeNPs treatment. The rfbC and DegT/DnrJ/EryC1/StrS gene were significantly up-regulated, indicating that SeNPs could destroy the integrity of cell membrane and thus play an antimicrobial role. Biogenic SeNPs are expected to be developed as an efficient and novel antimicrobial agent for application in the food industry.


Assuntos
Anti-Infecciosos , Nanopartículas , Pseudomonas fluorescens , Selênio , Selênio/farmacologia , Selênio/química , Selênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes , Nanopartículas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antioxidantes/farmacologia
2.
ACS Omega ; 7(34): 29909-29922, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061679

RESUMO

The overuse of antibiotics exacerbates the development of antibiotic-resistant bacteria, threatening global public health, while most traditional antibiotics act on specific targets and sterilize through chemical modes. Therefore, it is a desperate need to design novel therapeutics or extraordinary strategies to overcome resistant bacteria. Herein, we report a positively charged nanocomposite PNs-Cur with a hydrodynamic diameter of 289.6 nm, which was fabricated by ring-opening polymerization of ε-caprolactone and Z-Lys-N-carboxyanhydrides (NCAs), and then natural curcumin was loaded onto the PCL core of PNs with a nanostructure through self-assembly, identified through UV-vis, and characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Especially, the self-assembly dynamics of PNs was simulated through molecular modeling to confirm the formation of a core-shell nanostructure. Biological assays revealed that PNs-Cur possessed broad-spectrum and efficient antibacterial activities against both Gram-positive and Gram-negative bacteria, including drug-resistant clinical bacteria and fungus, with MIC values in the range of 8-32 µg/mL. Also, in vivo evaluation showed that PNs-Cur exhibited strong antibacterial activities in infected mice. Importantly, the nanocomposite did not indeed induce the emergence of drug-resistant bacterial strains even after 21 passages, especially showing low toxicity regardless of in vivo or in vitro. The study of the antibacterial mechanism indicated that PNs-Cur could indeed destruct membrane potential, change the membrane potential, and cause the leakage of the cytoplasm. Concurrently, the released curcumin further plays a bactericidal role, eventually leading to bacterial irreversible apoptosis. This unique bacterial mode that PNs-Cur possesses may be the reason why it is not easy to make the bacteria susceptible to easily produce drug resistance. Overall, the constructed PNs-Cur is a promising antibacterial material, which provides a novel strategy to develop efficient antibacterial materials and combat increasingly prevalent bacterial infections.

3.
J Am Chem Soc ; 143(6): 2484-2490, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33538597

RESUMO

Intercatalyst coupling has been widely applied in the functional mimics for binuclear synergy in natural metal enzymes. Herein, we introduce two facile and effective design strategies, which facilitate the coupling of two catalytic units via electrostatic interactions. The first system is based on a catalyst molecule functionalized with both a positively charged and a negatively charged group in the structure being able to pair with each other in an antiparallel manner arranged by electrostatic interactions. The other system consists of a mixture of two different of catalysts modified with either positively or negatively charged groups to generate intermolecular electrostatic interactions. Applying these designs to Ru(bda) (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water-oxidation catalysts improved the catalytic performance by more than an order of magnitude. The intermolecular electrostatic interactions in these two systems were fully identified by 1H NMR, TEM, SAXS, and electrical conductivity experiments. Molecular dynamics simulations further verified that electrostatic interactions contribute to the formation of prereactive dimers, which were found to play a key role in dramatically improving the catalytic performance. The successful strategies demonstrated here can be used in designing other intercatalyst coupling systems for activation and formation of small molecules and organic synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...