Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(27): 14932-14944, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365684

RESUMO

With advances in chemically induced proximity technologies, heterobifunctional modalities such as proteolysis targeting chimeras (PROTACs) have been successfully advanced to clinics for treating cancer. However, pharmacologic activation of tumor-suppressor proteins for cancer treatment remains a major challenge. Here, we present a novel Acetylation Targeting Chimera (AceTAC) strategy to acetylate the p53 tumor suppressor protein. We discovered and characterized the first p53Y220C AceTAC, MS78, which recruits histone acetyltransferase p300/CBP to acetylate the p53Y220C mutant. MS78 effectively acetylated p53Y220C lysine 382 (K382) in a concentration-, time-, and p300-dependent manner and suppressed proliferation and clonogenicity of cancer cells harboring the p53Y220C mutation with little toxicity in cancer cells with wild-type p53. RNA-seq studies revealed novel p53Y220C-dependent upregulation of TRAIL apoptotic genes and downregulation of DNA damage response pathways upon acetylation induced by MS78. Altogether, the AceTAC strategy could provide a generalizable platform for targeting proteins, such as tumor suppressors, via acetylation.


Assuntos
Proteína Supressora de Tumor p53 , Acetilação , Humanos , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Mutação , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
2.
Cell Death Differ ; 30(7): 1799-1810, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291217

RESUMO

Although numerous studies indicate that inhibition of USP7 suppresses tumor growth by activating p53, the precise mechanism by which USP7 contributes to tumor growth through the p53-independent manner is not well understood. p53 is frequently mutated in most triple-negative breast cancers (TNBC), characterized as the very aggressive form of breast cancers with limited treatment options and poor patient outcomes. Here, we found that the oncoprotein Forkhead Box M1 (FOXM1) acts as a potential driver for tumor growth in TNBC and, surprisingly, through a proteomic screen, we identified USP7 as a major regulator of FOXM1 in TNBC cells. USP7 interacts with FOXM1 both in vitro and in vivo. USP7 stabilizes FOXM1 through deubiquitination. Conversely, RNAi-mediated USP7 knockdown in TNBC cells, dramatically reduced the levels of FOXM1. Moreover, based upon the proteolysis targeting chimera (PROTAC) technology, we generated PU7-1 (protein degrader for USP7-1), as a USP7 specific degrader. PU7-1 induces rapid USP7 degradation at low nanomolar concentrations in cells but shows no obvious effect on other USP family proteins. Strikingly, the treatment of TNBC cells with PU7-1 significantly abrogates FOXM1 functions and effectively suppresses cell growth in vitro. By using xenograft mouse models, we found that PU7-1 markedly represses tumor growth in vivo. Notably, ectopic overexpression of FOXM1 can reverse the tumor growth suppressive effects induced by PU7-1, underscored the specific effect on FOXM1 induced by USP7 inactivation. Together, our findings indicate that FOXM1 is a major target of USP7 in modulating tumor growth in a p53-independent manner and reveals the USP7 degrader as a potential therapeutic tool for the treatment of triple-negative breast cancers.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Linhagem Celular Tumoral , Proteômica , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
Nat Commun ; 14(1): 1941, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024504

RESUMO

Since Mdm2 (Mouse double minute 2) inhibitors show serious toxicity in clinic studies, different approaches to achieve therapeutic reactivation of p53-mediated tumor suppression in cancers need to be explored. Here, we identify the USP2 (ubiquitin specific peptidase 2)-VPRBP (viral protein R binding protein) axis as an important pathway for p53 regulation. Like Mdm2, VPRBP is a potent repressor of p53 but VPRBP stability is controlled by USP2. Interestingly, the USP2-VPRBP axis also regulates PD-L1 (programmed death-ligand 1) expression. Strikingly, the combination of a small-molecule USP2 inhibitor and anti-PD1 monoclonal antibody leads to complete regression of the tumors expressing wild-type p53. In contrast to Mdm2, knockout of Usp2 in mice has no obvious effect in normal tissues. Moreover, no obvious toxicity is observed upon the USP2 inhibitor treatment in vivo as Mdm2-mediated regulation of p53 remains intact. Our study reveals a promising strategy for p53-based therapy by circumventing the toxicity issue.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Transporte , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
4.
Nat Cancer ; 4(4): 564-581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973430

RESUMO

Although the gain of function (GOF) of p53 mutants is well recognized, it remains unclear whether different p53 mutants share the same cofactors to induce GOFs. In a proteomic screen, we identified BACH1 as a cellular factor that recognizes the p53 DNA-binding domain depending on its mutation status. BACH1 strongly interacts with p53R175H but fails to effectively bind wild-type p53 or other hotspot mutants in vivo for functional regulation. Notably, p53R175H acts as a repressor for ferroptosis by abrogating BACH1-mediated downregulation of SLC7A11 to enhance tumor growth; conversely, p53R175H promotes BACH1-dependent tumor metastasis by upregulating expression of pro-metastatic targets. Mechanistically, p53R175H-mediated bidirectional regulation of BACH1 function is dependent on its ability to recruit the histone demethylase LSD2 to target promoters and differentially modulate transcription. These data demonstrate that BACH1 acts as a unique partner for p53R175H in executing its specific GOFs and suggest that different p53 mutants induce their GOFs through distinct mechanisms.


Assuntos
Mutação com Ganho de Função , Proteína Supressora de Tumor p53 , Regulação para Baixo , Mutação com Ganho de Função/genética , Mutação , Proteômica , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
5.
FASEB J ; 34(9): 11488-11497, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652764

RESUMO

Werner syndrome protein (WRN) plays critical roles in DNA replication, recombination, and repair, as well as transcription and cellular senescence. Ubiquitination and degradation of WRN have been reported, however, the E3 ubiquitin ligase of WRN is little known. Here, we identify mindbomb E3 ubiquitin protein ligase 1 (MIB1) as a novel E3 ubiquitin ligase for WRN protein. MIB1 physically interacts with WRN in vitro and in vivo and induces ubiquitination and degradation of WRN in the ubiquitin-proteasome pathway. Camptothecin (CPT) enhances the interaction between MIB1 and WRN, and promotes WRN degradation in a MIB1-dependent manner. In addition, CPT-induced cellular senescence is facilitated by the expression of MIB1 and attenuated by WRN expression. Our results show that MIB1-mediated degradation of WRN promotes cellular senescence and reveal a novel model executed by MIB1 and WRN to regulate cellular senescence.


Assuntos
Camptotecina/farmacologia , Senescência Celular/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Helicase da Síndrome de Werner/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Senescência Celular/genética , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Helicase da Síndrome de Werner/genética
6.
Oncogene ; 38(14): 2501-2515, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30532073

RESUMO

MDM2 (Murine double minute 2) acts as a key repressor for p53-mediated tumor-suppressor functions, which includes cellular senescence. We found that MDM2 can promote cellular senescence by modulating WRN stability. Werner syndrome (WS), caused by mutations of the WRN gene, is an autosomal recessive disease, which is characterized by premature aging. Loss of WRN function induces cellular senescence in human cancer cells. Here, we found that MDM2 acts as an E3 ligase for WRN protein. MDM2 interacts with WRN both in vivo and in vitro. MDM2 induces ubiquitination of WRN and dramatically downregulates the levels of WRN protein in human cells. During DNA damage response, WRN is translocated to the nucleoplasm to facilitate its DNA repair functions; however, it is degraded by the MDM2-mediated ubiquitination pathway. Moreover, the senescent phenotype induced by DNA damage reagents, such as Etoposide, is at least in part mediated by MDM2-dependent WRN degradation as it can be significantly attenuated by ectopic expression of WRN. These results show that MDM2 is critically involved in regulating WRN function via ubiquitin-dependent degradation and reveal an unexpected role of MDM2 in promoting cellular senescence through a p53-independent manner.


Assuntos
Senescência Celular/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Regulação para Baixo/genética , Etoposídeo/metabolismo , Células HCT116 , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Síndrome de Werner/metabolismo
7.
J Biol Chem ; 289(49): 33878-86, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25301942

RESUMO

The key member of the MOZ (monocyticleukaemia zinc finger protein), Ybf2/Sas3, Sas2, and TIP60 acetyltransferases family, Tat-interactive protein, 60 kD (TIP60), tightly modulates a wide array of cellular processes, including chromatin remodeling, gene transcription, apoptosis, DNA repair, and cell cycle arrest. The function of TIP60 can be regulated by SIRT1 through deacetylation. Here we found that TIP60 can also be functionally regulated by HDAC3. We identified six lysine residues as its autoacetylation sites. Mutagenesis of these lysines to arginines completely abolishes the autoacetylation of TIP60. Overexpression of HDAC3 increases TIP60 ubiquitination levels. However, unlike SIRT1, HDAC3 increased the half-life of TIP60. Further study found that HDAC3 colocalized with TIP60 both in the nucleus and the cytoplasm, which could be the reason why HDAC3 can stabilize TIP60. The deacetylation of TIP60 by both SIRT1 and HDAC3 reduces apoptosis induced by DNA damage. Knockdown of HDAC3 in cells increased TIP60 acetylation levels and increased apoptosis after DNA damage. Together, our findings provide a better understanding of TIP60 regulation mechanisms, which is a significant basis for further studies of its cellular functions.


Assuntos
Reparo do DNA , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dano ao DNA , Meia-Vida , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Humanos , Lisina/química , Lisina Acetiltransferase 5 , Dados de Sequência Molecular , Estabilidade Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ubiquitinação
8.
Biogerontology ; 15(4): 347-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24965941

RESUMO

Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.


Assuntos
Dano ao DNA , Replicação do DNA , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , RecQ Helicases/metabolismo , Acetilação , Linhagem Celular Transformada , Humanos , Cinética , Sirtuínas/metabolismo , Helicase da Síndrome de Werner
9.
Biochim Biophys Acta ; 1804(8): 1684-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20471503

RESUMO

NAD(+)-dependent Class III histone deacetylase SIRT1 is a multiple function protein critically involved in stress responses, cellular metabolism and aging through deacetylating a variety of substrates including p53, forkhead-box transcription factors, PGC-1alpha, NF-kappaB, Ku70 and histones. The first discovered non-histone target of SIRT1, p53, is suggested to play a central role in SIRT1-mediated functions in tumorigenesis and senescence. SIRT1 was originally considered to be a potential tumor promoter since it negatively regulates the tumor suppressor p53 and other tumor suppressors. There is new evidence that SIRT1 acts as a tumor suppressor based on its role in negatively regulating beta-catenin and survivin. This review provides an overview of current knowledge of SIRT1-p53 signaling and controversies regarding the functions of SIRT1 in tumorigenesis.


Assuntos
Envelhecimento/metabolismo , Neoplasias/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Senescência Celular , Humanos , Camundongos , Modelos Biológicos , Neoplasias/etiologia , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Estresse Oxidativo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...