Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 434: 115810, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822839

RESUMO

Recent evidence suggests potential benefits of applying local anesthetics in cancer patients. Specifically, tetracaine has a potent antitumor effect in diverse cancers, including neuroblastoma, breast cancer, and melanoma; however, the underlying molecular mechanisms remain unclear. Here, we reported that tetracaine hydrochloride inhibited the growth of melanoma cells and arrested melanoma cells in the G0/G1 phase. Tetracaine hydrochloride treatment resulted in translocation of hnRNPA1 from the nucleoplasm to the nuclear envelope and reduced the protein stability of hnRNPA1 possibly by disrupting the dynamic balance of ubiquitination and neddylation. Elevated hnRNPA1 upregulated cyclin D1 to promote cell cycle in melanoma. The hnRNPA1 overexpression attenuated the effect of tetracaine hydrochloride on melanoma cell growth suppression and cell cycle arrest. Furthermore, melanoma homograft experiments demonstrated that tetracaine hydrochloride suppressed melanoma growth, while hnRNPA1 overexpression alleviated tetracaine's antitumor effect on melanoma. Taken together, our findings suggest that tetracaine hydrochloride exerts a potent antitumor effect on melanoma both in vitro and in vivo, and the effect involves cell cycle arrest induction via downregulation of hnRNPA1.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Melanoma/tratamento farmacológico , Tetracaína/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Masculino , Camundongos , Tetracaína/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Oncol ; 2021: 8820691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603450

RESUMO

OBJECTIVE: To investigate the clinical significance of the mRNA expression of RRM1, TUBB3, and ERCC1 in non-small-cell lung cancer (NSCLC) tissues for the selection of adjuvant/postoperative chemotherapy regimens. METHODS: Patients diagnosed with stage Ib-IIIa NSCLC were enrolled and randomly divided into a control group (undetected group) and an experimental group (detected group) after radical operation. The control group randomly received chemotherapy with gemcitabine plus cisplatin or paclitaxel plus cisplatin. The mRNA expression of RRM1, TUBB3, and ERCC1 was detected in the experimental group before chemotherapy, and based on the detected expression, the chemotherapy regimen of cisplatin plus gemcitabine or cisplatin plus paclitaxel was chosen. The disease-free survival (DFS) of the control group and experimental group was compared. RESULTS: Pathological type, stage, gene expression detection, and treatment method were not significantly correlated with DFS (P > 0.05). In the subgroups treated with gemcitabine, the median DFS was 17 months in the detected group and 10.5 months in the undetected group (hazard ratio = 0.2147, 95% confidence interval: 0.07909-0.5827, P=0.0025). Multivariate regression analysis was performed to analyse whether gene expression detection was independently correlated with DFS in the subgroups treated with gemcitabine (P=0.025). In the detected group, the prognosis of patients with low expression of RRM1 was better than that of patients with high expression of RRM1 after paclitaxel treatment (P=0.0039). CONCLUSIONS: The selection of chemotherapy regimen based on mRNA expression of the RRM1, TUBB3, and ERCC1 genes may improve selection of candidate patients to receive clinical chemotherapy. However, large-scale prospective clinical studies are needed for in-depth investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...