Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069760

RESUMO

Oil pollution is caused by the frequent discharge of contaminated industrial wastewater and accidental oil spills and is a severe environmental and health concern. Therefore, efficient materials and processes for effective oil-water separation are being developed. Herein, SiO2-Na2SiO3-coated stainless steel fibers (SSF) with underwater superoleophobic and low-adhesion properties were successfully prepared via a one-step hydrothermal process. The modified surfaces were characterized with scanning electron microscopy (SEM), and contact angle measurements to observe the surface morphology, confirm the successful incorporation of SiO2, and evaluate the wettability, as well as with X-ray diffraction (XRD). The results revealed that SiO2 nanoparticles were successfully grown on the stainless-steel fiber surface through the facile hydrothermal synthesis, and the formation of sodium silicate was detected with XRD. The SiO2-Na2SiO3-coated SSF surface exhibited superior underwater superoleophobic properties (153-162°), super-hydrophilicity and high separation efficiency for dichloromethane-water, n-hexane-water, tetrachloromethane-water, paroline-water, and hexadecane-water mixtures. In addition, the as-prepared SiO2-Na2SiO3-coated SSF demonstrated superior wear resistance, long-term stability, and re-usability. We suggest that the improved durability may be due to the presence of sodium silicate that enhanced the membrane strength. The SiO2-Na2SiO3-coated SSF also exhibited desirable corrosion resistance in salty and acidic environments; however, further optimization is needed for their use in basic media. The current study presents a novel approach to fabricate high-performance oil-water separation membranes.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-772649

RESUMO

Periodontal tissue, especially the alveolar bone, are closely associated with the progress and efficacy of orthodontic treatment. Prior to and during orthodontic treatment, dentists should fully evaluate the status of periodontal hard tissues to prevent clinical problems. This article aims to discuss bone issues associated with orthodontic treatment, including gingival papilla absence, alveolar bone insufficiency, excessive cortical resistance, and altered passive eruption, etc. The mechanism and prevention methods of these problems are also described.


Assuntos
Gengiva , Periodonto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...