Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 40(9): 4238-4243, 2019 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854890

RESUMO

This study tested a strategy in simulated column systems to control methane emissions from algal bloom waters using the combined technology of algae sedimentation and sediment capping. The results demonstrated that the synergy of algal sedimentation and sediment capping can effectively improve the water environment and reduce methane emissions; however, the improvement rate differed among capping materials. The use of activated carbon yielded better performance on the water environment improvement and methane emission control than soil and zeolite. Compared with the control system, the dissolved oxygen and redox potential in the water were increased from<2.5 mg·L-1 to 3.1 mg·L-1 and from<100 mV to 174 mV, respectively. In addition, the redox potential in the surface sediment was reversed from -125 mV to 168 mV after algal sedimentation with subsequent activated carbon capping. As a result, methane emissions in the algal sedimentation-activated carbon capping systems were decreased by 90.2% over the incubation period relative to the control system. This study provides useful insights into methane emission control in eutrophic waters.


Assuntos
Eutrofização , Lagos , Metano , Sedimentos Geológicos , Oxigênio , Solo
2.
Huan Jing Ke Xue ; 34(10): 3894-903, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24364308

RESUMO

Three research sites of subsidence waters, including Panji (PJ), Guqiao (GQ) and Xieqiao (XQ) located in the Huainan "Panxie" Mine Area have been selected to address their phosphorus (P) adsorption behavior in the sediments considering the site-specific regional water chemistry. The P isothermal adsorption was measured in pure water and four different types of ion solutions, prepared through additions of sodium chloride (NaCl), calcium chloride (CaCl2), sodium bicarbonate (NaHCO3), and a mixture of sodium bicarbonate and calcium chloride (NaHCO3 + CaCI2). The first four settings were studied to analyze the individual impact of each solution on P adsorption while the last one was to study their combined effect. In general, Ca2 + could enhance P adsorption on sediment surfaces while weakly alkaline conditions caused by bicarbonates were unfavorable for its adsorption. As a comprehensive effect, the positive effect of the former was greater than the negative effect of the latter. The zero equilibrium phosphorus concentrations (EPC) in the three sites were 0. 059, 0. 032 and 0. 040 mg.L-1, respectively, showing trends of P releasing to the overlying water column. The site of PJ showed greater P releasing potential than those at the GQ and XQ sites, probably due to its higher nutrient level. Overall, P releasing risks in the researched sediments are weaker than those in eutrophic lakes, while they are very similar to lakes with lower trophic levels, because of their unique sedimentary environments from inundated agricultural soils.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Fósforo/química , Adsorção , China , Mineração , Solo/química , Poluentes Químicos da Água
3.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3249-58, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24564157

RESUMO

A total of eight mining subsidence waters, including five sites in Huainan "Panxie" Mining Areas (PXS-1, PXS-2, PXS-3, PXS-4, and PXS-5) and three sites in Huaibei "Zhu-Yang huang" Mining Areas (HBDH, HBZH, HBNH), were selected to study the nutrient temporal and spatial distribution and trophic states. Among the sites, three sites (PXS-1, PXS-3, and HBDH) showed higher nutrient level and could be classified into moderate eutrophication, whereas the other five were in moderate nutrient level and mild eutrophication. Overall, the nutrient level of Huainan mining subsidence waters was higher than that of Huaibei mining subsidence waters. All the test samples in the two mining areas had a higher ratio of nitrogen to phosphorus (N:P), being 25-117 in Huainan and 17-157 in Huaibei, and with a seasonal variety, the lowest in growth season. The dissolved inorganic phosphorus (DIP) in total phosphorous (TP) occupied a small percentage, being averagely 15.4% and 18.4% in Huainan and Huaibei mining areas, respectively. Nitrate was the main specie of dissolved inorganic nitrogen (DIN), with the ratio of nitrate to DIN being 74% and 89% in Huainan and Huaibei mining areas, respectively. Relative to the waters age, human activities could be one of the main factors responsible for the high nutrient level and the faster eutrophication process of these waters.


Assuntos
Minas de Carvão , Resíduos Industriais , Minerais/análise , Poluentes Químicos da Água/análise , Água/análise , China , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...