Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 45(1): e13532, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140497

RESUMO

This study investigated kimchi-induced apoptosis in HT-29 human colon carcinoma cells. Three types of kimchi samples were prepared: standardized kimchi brined with general commercial Baechu cabbage by a standardized recipe (SK), Amtak Baechu kimchi brined with Amtak Baechu cabbage by a standardized recipe (AmK), and anticancer kimchi brined with organically cultivated Baechu cabbage by a functional recipe (AK). MTT assay, qRT-PCR, and Western blotting analysis were performed. The results indicate that AmK and AK, especially AK significantly upregulated mRNA expression of apoptosis-related genes Bim, Bax, Bak, caspase-8, -9, -3, and p53 but suppressed Bcl-xL and Bcl-2 expression. In addition, AK treatment significantly upregulated protein expression levels of caspase-3 but strikingly reduced the protein expression level of Bcl-2 (p < .05), followed by AmK treatment. Our data suggest that AK and AmK can markedly suppress the proliferation of HT-29 cells via activation of apoptosis. PRACTICAL APPLICATIONS: Colon cancer is the fourth cancer with the highest incidence in the world. Cell apoptosis is a type of programmed cell death and plays an important role in the cancer cells study. Kimchi is a traditional fermented food in Korea, with a relatively high daily consumption. Our present study used three kinds of kimchi which prepared with different main ingredients and recipes. The results suggest that organically cultivated Baechu cabbage and functional recipe in kimchi preparation play an important role in the anticancer efficacy of kimchi, which has been shown to promote induction of apoptosis in HT-29 cells.


Assuntos
Carcinoma , Neoplasias do Colo , Alimentos Fermentados , Apoptose , Neoplasias do Colo/tratamento farmacológico , Fermentação , Células HT29 , Humanos
2.
RSC Adv ; 10(9): 5351-5360, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498302

RESUMO

The anticancer effects of kimchi prepared with different kinds of solar salts were evaluated in an in vitro cellular system using HT-29 human colon carcinoma cells. Four kinds of kimchi samples were prepared, using different solar salts: conventionally manufactured solar salt (CS), filtered sea water solar salt (FS), dehydrated solar salt by centrifuging (DS), and washed-dehydrated solar salt (WDS). Prepared kimchi samples were presented as CSK, FSK, DSK, and WDSK, respectively. The pH values, acidity, and sensory evaluation were determined after 3 week fermentation at 5 °C (pH 4.3), and WDSK exhibited the best fermented characteristics and taste among the 4 samples examined. In the HT-29 cell growth inhibitory activity assay, all 4 kimchi samples exert dose-dependent cell growth inhibition, with WDSK showing significant growth inhibition of HT-29 cells. mRNA and protein expression levels of apoptosis and cell cycle arrest related factors reveals that WDSK significantly increases the mRNA expression levels of Bax, Bim, caspases-3, caspases-9, and p21 as compared to other kimchi samples, at a concentration of 4.0 mg mL-1. In addition, WDSK treatment strongly decreases the Bcl-2 protein expression (on western blot) in HT-29 cells, as compared to the control group (no kimchi treatment) and significantly increases the protein expression levels of Bax, caspases-3, caspases-9, and p53. Inductively coupled plasma atomic emission spectrometry (ICP-OES) reveals that WDS possesses a different mineral composition when compared to the other three solar salts; notably, the lower Mg (9.3 g kg-1) and S (4.7 g kg-1) content of WDS may cause better taste, fermented characteristcs, and functionality of WDSK. These results indicate WDS to be the ideal solar salt for kimchi preparation, which enhances the taste due to its lower Mg and S contents, and increases the anticancer effects by exerting better pro-apoptosis and cell cycle arrest abilities in HT-29 cells.

3.
Pak J Pharm Sci ; 29(3): 935-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27166556

RESUMO

The aim of this study was to investigate the potential anti-inflammatory effect of Conyzacanadeusis methanol extract (CME) using a cell model of RAW264.7 murine macrophage cell stimulated with lipopolysaccharide (LPS)(1µg/ml). Co-treatment with different concentrations (10, 50 and 100µg/ml) of CME was concentration-dependently reduced the LPS-induced generation of prostaglandin E2 (PGE2), nitric oxide (NO) tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. In addition, CME also reduced the mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), TNF-α, IL-1ß and IL-6 in LPS-stimulated RAW264.7 cells. These results suggested that CME showed an anti-inflammatory activity through reduced the mRNA expression of COX-2, iNOS, TNF-α IL-1ß and IL-6 and also decreased the productions of PGE2, NO, TNF-α IL-1ß and IL-6in LPS-stimulated RAW264.7 cells.


Assuntos
Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Metanol/química , Extratos Vegetais/química , Solventes/química , Animais , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Células RAW 264.7
4.
Prev Nutr Food Sci ; 20(1): 52-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25866750

RESUMO

This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-α, IL-1ß, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...