Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788716

RESUMO

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Assuntos
Proliferação de Células , Hidroximetilglutaril-CoA Sintase , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ácido Mevalônico/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Transdução de Sinais , Degrons , Proteínas Adaptadoras de Transdução de Sinal
2.
Adv Healthc Mater ; : e2400654, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795000

RESUMO

Existing delivery methods for RNAi therapeutics encounter challenges, including stability, specificity, and off-target effects, which restrict their clinical effectiveness. In this study, a novel miR-133a zipper nanoparticle (NP) system that integrates miRNA zipper technology with rolling circle transcription (RCT) to achieve targeted delivery and specific regulation of miR-133a in adipocytes, is presented. This innovative approach can greatly enhance the delivery and release of miR-133a zippers, increasing the expression of thermogenic genes and mitochondrial biogenesis. he miR-133a zipper NP is utilized for the delivery of miRNA zipper-blocking miR-133a, an endogenous inhibitor of Prdm16 expression, to enhance the thermogenic activity of adipocytes by modulating their transcriptional program. Inhibition of miR-133a through the miR-133a zipper NP leads to more significant upregulation of thermogenic gene expression (Prdm16 and Ucp1) than with the free miR-133a zipper strand. Furthermore, miR-133a zipper NPs increase the number of mitochondria and induce heat production, reducing the size of 3D adipose spheroids. In short, this study emphasizes the role of RNA NPs in improving RNAi stability and specificity and paves the way for broader applications in gene therapy. Moreover, this research represents a significant advancement in RNAi-based treatments, pointing toward a promising direction for future therapeutic strategies.

3.
Nano Lett ; 23(15): 6859-6867, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470721

RESUMO

Nanomaterials hybridized with biological components have widespread applications. among many candidates, peptides are attractive in that their peptide sequences can self-assemble with the surface of target materials with high specificity without perturbing the intrinsic properties of nanomaterials. Here, a 1D hybrid nanomaterial was developed through self-assembly of a designed peptide. A hexagonal coiled-coil motif geometrically matched to the diameter of the inorganic nanomaterial was fabricated, whose hydrophobic surface was wrapped along the axis of the hydrophobic core of the coiled coil. Our morphological and spectroscopic analyses revealed rod-shaped, homogeneous peptide-inorganic nanomaterial complexes. Culturing embryonic stem cells on surfaces coated with this peptide-assembled single-chain atomic crystal increased the growth and adhesion of the embryonic stem cells. The hybridized nanomaterial also served as an ECM for brain organoids, accelerating the maturation of neurons. New methods to fabricate hybrid materials through peptide assembly can be applied.


Assuntos
Peptídeos , Células-Tronco Pluripotentes , Peptídeos/farmacologia , Peptídeos/química , Sequência de Aminoácidos , Neurônios , Diferenciação Celular
4.
Arch Pharm Res ; 45(7): 494-505, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35759089

RESUMO

Numerous active compounds derived from ginseng exhibit various pharmacological and therapeutic effects in humans. Despite the benefits of ginsenosides, little is known about their influence on embryonic development, especially in human embryonic models. In this study, we evaluated the effect of two ginsenosides (Rg3 and Rh2) on human embryonic development, using embryoid bodies and three-dimensional (3D) aggregates of pluripotent stem cells. We exposed embryoid bodies to varying concentrations of Rg3 and Rh2 (5, 10, and 25 µg/mL), and their embryotoxicity was evaluated by measuring the size of the embryoid body and the expression of epithelial-mesenchymal transition (EMT) markers. The growth rates of embryoid bodies were reduced upon treatment with a high concentration (25 µg/mL) of Rg3 and Rh2. In addition, Rg3 induced E-cadherin expression while inhibiting N-cadherin and vimentin expression, which implies the inhibition of EMT. Such a change in E-cadherin expression was not observed after Rh2 treatment, but the inhibition of N-cadherin and vimentin expression was observed to be consistent with that observed on treatment with Rg3. Taken together, using the human embryoid model, we found that the two active ginsenosides, Rg3 and Rh2, induce aberrant embryoid body formation and ablate normal EMT.


Assuntos
Ginsenosídeos , Caderinas , Corpos Embrioides , Transição Epitelial-Mesenquimal , Ginsenosídeos/farmacologia , Humanos , Vimentina/farmacologia
5.
J Ginseng Res ; 46(3): 357-366, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600781

RESUMO

Background: Withania somnifera (Solanaceae), generally known as Indian ginseng, is a medicinal plant that is used in Ayurvedic practice for promoting health and longevity. This study aims to identify the bioactive metabolites from Indian ginseng and elucidate their structures. Methods: Withanolides were purified by chromatographic techniques, including HPLC coupled with LC/MS. Chemical structures of isolated withanolides were clarified by analyzing the spectroscopic data from 1D and 2D NMR, and HR-ESIMS experiment. Absolute configurations of the withanolides were established by the application of NMR chemical shifts and ECD calculations. Anti-adipogenic activities of isolates were evaluated using 3T3-L1 preadipocytes with Oil Red O staining and quantitative real-time PCR (qPCR). Results: Phytochemical examination of the roots of Indian ginseng afforded to the isolation of six withanolides (1-6), including three novel withanolides, withasilolides G-I (1-3). All the six compounds inhibited adipogenesis and suppressed the enlargement of lipid droplets, compared to those of the control. Additionally, the mRNA expression levels of Fabp4 and Adipsin, the adipocyte markers decreased noticeably following treatment with 25 µM of 1-6. The active compounds (1-6) also promoted lipid metabolism by upregulating the expression of the lipolytic genes HSL and ATGL and downregulating the expression of the lipogenic gene SREBP1. Conclusion: The results of our experimental studies suggest that the withasilolides identified herein have anti-adipogenic potential and can be considered for the development of therapeutic strategies against adipogenesis in obesity. Our study also provides a mechanistic rationale for using Indian ginseng as a potential therapeutic agent against obesity and related metabolic diseases.

6.
Exp Mol Med ; 54(3): 324-333, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338256

RESUMO

Adiponectin (encoded by Adipoq), a fat-derived hormone, alleviates risk factors associated with metabolic disorders. Although many transcription factors are known to control adiponectin expression, the mechanism underlying its fluctuation with regard to metabolic status remains unclear. Here, we show that ribosomal protein S6 kinase 1 (S6K1) controls adiponectin expression by inducing a transcriptional switch between two transcriptional machineries, BMAL1 and EZH2. Active S6K1 induced a suppressive histone code cascade, H2BS36p-EZH2-H3K27me3, leading to suppression of adiponectin expression. Moreover, active S6K1 phosphorylated BMAL1, an important transcription factor regulating the circadian clock system, at serine 42, which led to its dissociation from the Adipoq promoter region. This response resulted in EZH2 recruitment and subsequent H3K27me3 modification of the Adipoq promoter. Upon fasting, inactivation of S6K1 induced the opposite transcriptional switch, EZH2-to-BMAL1, promoting adiponectin expression. Consistently, S6K1-depleted mice exhibited lower H3K27me3 levels and elevated adiponectin expression. These findings identify a novel epigenetic switch system by which S6K1 controls the production of adiponectin, which displays beneficial effects on metabolism.


Assuntos
Fatores de Transcrição ARNTL , Adiponectina , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas Quinases S6 Ribossômicas , Fatores de Transcrição ARNTL/genética , Adiponectina/genética , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica , Código das Histonas , Camundongos , Proteínas Quinases S6 Ribossômicas/metabolismo
7.
Cancers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159030

RESUMO

Dysregulation of epigenetic mechanisms as well as genomic mutations contribute to the initiation and progression of cancer. In addition to histone code writers, including histone lysine methyltransferase (KMT), and histone code erasers, including histone lysine demethylase (KDM), histone code reader proteins such as HP1 are associated with abnormal chromatin regulation in human diseases. Heterochromatin protein 1 (HP1) recognizes histone H3 lysine 9 methylation and broadly affects chromatin biology, such as heterochromatin formation and maintenance, transcriptional regulation, DNA repair, chromatin remodeling, and chromosomal segregation. Molecular functions of HP1 proteins have been extensively studied, although their exact roles in diseases require further study. Here, we comprehensively review the studies that have revealed the altered expression of HP1 and its functions in tumorigenesis. In particular, the distinctive effects of each HP1 subtype, namely HP1α, HP1ß, and HP1γ, have been thoroughly explored in various cancer types. We also highlight how HP1 can serve as a potential biomarker for cancer prognosis and therapeutic target for cancer patients.

8.
Biochem Biophys Res Commun ; 594: 101-108, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078109

RESUMO

S6K1 serves as an important signaling regulator of cell proliferation and growth in the mTOR signaling pathway. Excessive activation of the mTOR/S6K1 signaling pathway promotes abnormal cell growth and survival, thereby resulting in tumorigenesis. The roles of S6K1 in protein synthesis and metabolism are well known, but an additional role of S6K1 as a gene transcription regulator has not been much understood. Here, we demonstrated that S6K1 is dynamically distributed in the cytoplasm and nuclei of human cervical cancer cells. S6K1 nuclear localization was serum dependent and serum deprivation or rapamycin treatment inhibited S6K1 Thr389 phosphorylation and, thereby, S6K1 was retained in the cytoplasm. Furthermore, we found that endogenous S6K1 interacted with CREB in the cervical cancer cells. Additionally, S6K1 upregulated the CRE-driven promoter luciferase activity. The proto-oncogene c-JUN, which has several CREs, was attenuated in the S6K1 knockdown cervical cancer cells. The binding of CREB/S6K1 to the c-JUN promoter, altered by serum restimulation, was associated with active epigenetic markers. In HeLa cell, 891 promoter regions, to which S6K1 directly binds, were detected. Our findings suggested that active S6K1, which is dynamically translocated into the nucleus, directly binds to chromatin and could play a role in epigenetic mechanisms or transcription factor recruitment.


Assuntos
Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transporte Ativo do Núcleo Celular , Citoplasma/metabolismo , Epigênese Genética , Genoma Humano , Genômica , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas , Elementos de Resposta , Transdução de Sinais , Transcrição Gênica
10.
Molecules ; 26(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577136

RESUMO

Extensive epigenetic remodeling occurs during the cell fate determination of stem cells. Previously, we discovered that eudesmin regulates lineage commitment of mesenchymal stem cells through the inhibition of signaling molecules. However, the epigenetic modulations upon eudesmin treatment in genomewide level have not been analyzed. Here, we present a transcriptome profiling data showing the enrichment in PRC2 target genes by eudesmin treatment. Furthermore, gene ontology analysis showed that PRC2 target genes downregulated by eudesmin are closely related to Wnt signaling and pluripotency. We selected DKK1 as an eudesmin-dependent potential top hub gene in the Wnt signaling and pluripotency. Through the ChIP-qPCR and RT-qPCR, we found that eudesmin treatment increased the occupancy of PRC2 components, EZH2 and SUZ12, and H3K27me3 level on the promoter region of DKK1, downregulating its transcription level. According to the analysis of GEO profiles, DEGs by depletion of Oct4 showed an opposite pattern to DEGs by eudesmin treatment. Indeed, the expression of pluripotency markers, Oct4, Sox2, and Nanog, was upregulated upon eudesmin treatment. This finding demonstrates that pharmacological modulation of PRC2 dynamics by eudesmin might control Wnt signaling and maintain pluripotency of stem cells.


Assuntos
Furanos , Lignanas , Transcriptoma , Diferenciação Celular , Linhagem Celular , Reposicionamento de Medicamentos , Histonas/metabolismo , Fator 3 de Transcrição de Octâmero , Complexo Repressor Polycomb 2 , Via de Sinalização Wnt
11.
Adv Mater ; 33(45): e2007949, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561899

RESUMO

Recent advances in 3D cell culture technology have enabled scientists to generate stem cell derived organoids that recapitulate the structural and functional characteristics of native organs. Current organoid technologies have been striding toward identifying the essential factors for controlling the processes involved in organoid development, including physical cues and biochemical signaling. There is a growing demand for engineering dynamic niches characterized by conditions that resemble in vivo organogenesis to generate reproducible and reliable organoids for various applications. Innovative biomaterial-based and advanced engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of organoid research. The recent advances in organoid engineering, including extracellular matrices and genetic modulation, are comprehensively summarized to pinpoint the parameters critical for organ-specific patterning. Moreover, perspective trends in developing tunable organoids in response to exogenous and endogenous cues are discussed for next-generation developmental studies, disease modeling, and therapeutics.


Assuntos
Engenharia Biomédica , Técnicas de Cultura de Células em Três Dimensões/métodos , Organoides/metabolismo , Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Engenharia Genética , Humanos , Hidrogéis/química , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
Sci Rep ; 11(1): 9122, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907225

RESUMO

Werner syndrome (WRN) is a rare progressive genetic disorder, caused by functional defects in WRN protein and RecQ4L DNA helicase. Acceleration of the aging process is initiated at puberty and the expected life span is approximately the late 50 s. However, a Wrn-deficient mouse model does not show premature aging phenotypes or a short life span, implying that aging processes differ greatly between humans and mice. Gene expression analysis of WRN cells reveals very similar results to gene expression analysis of Hutchinson Gilford progeria syndrome (HGPS) cells, suggesting that these human progeroid syndromes share a common pathological mechanism. Here we show that WRN cells also express progerin, an abnormal variant of the lamin A protein. In addition, we reveal that duplicated sequences of human WRN (hWRN) from exon 9 to exon 10, which differ from the sequence of mouse WRN (mWRN), are a natural inhibitor of progerin. Overexpression of hWRN reduced progerin expression and aging features in HGPS cells. Furthermore, the elimination of progerin by siRNA or a progerin-inhibitor (SLC-D011 also called progerinin) can ameliorate senescence phenotypes in WRN fibroblasts and cardiomyocytes, derived from WRN-iPSCs. These results suggest that progerin, which easily accumulates under WRN-deficient conditions, can lead to premature aging in WRN and that this effect can be prevented by SLC-D011.


Assuntos
Lamina Tipo A/metabolismo , Progéria/patologia , Helicase da Síndrome de Werner/metabolismo , Síndrome de Werner/genética , Adulto , Senilidade Prematura/genética , Animais , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Criança , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Expressão Gênica , Humanos , Masculino , Camundongos Mutantes , Progéria/genética , Isoformas de Proteínas , Síndrome de Werner/patologia , Helicase da Síndrome de Werner/genética
13.
Biomedicines ; 9(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477919

RESUMO

Safflower (Carthamus tinctorius) is an annual herb belonging to the Compositae family; it has a history of use as a food colorant, dye, and medicine in oriental countries. LC-MS-UV-based chemical analysis of extract of the florets of C. tinctorius led to the isolation of two new C10-polyacetylene glycosides, (8Z)-decaene-4,6-diyne-1,10-diol-1-O-ß-d-glucopyranoside (1) and (8S)-deca-4,6-diyne-1,8-diol-1-O-ß-d-glucopyranoside (2), together with five known analogs (3-7). The structures of the new compounds were determined by using 1D and 2D NMR spectroscopic data and HR-MS data, as well as chemical transformations. Of compounds 1-7, compounds 2, 3, and 4 inhibited the adipogenesis of 3T3-L1 preadipocytes, whereas compounds 1 and 6 promoted adipogenesis. Compounds 2, 3, and 4 also prevented lipid accumulation through the suppression of the expression of lipogenic genes and the increase of the expression of lipolytic genes. Moreover, compounds 3 and 4 activated AMPK, which is known to facilitate lipid metabolism. Our findings provide a mechanistic rationale for the use of safflower-derived polyacetylene glycosides as potential therapeutic agents against obesity.

14.
Molecules ; 25(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322233

RESUMO

Obesity causes a wide range of metabolic diseases including diabetes, cardiovascular disease, and kidney disease. Thus, plenty of studies have attempted to discover naturally derived compounds displaying anti-obesity effects. In this study, we evaluated the inhibitory effects of morolic acid 3-O-caffeate (MAOC), extracted from Betula schmidtii, on adipogenesis. Treatment of 3T3-L1 cells with MAOC during adipogenesis significantly reduced lipid accumulation and decreased the expression of adiponectin, a marker of mature adipocytes. Moreover, the treatment with MAOC only during the early phase (day 0-2) sufficiently inhibited adipogenesis, comparable with the inhibitory effects observed following MAOC treatment during the whole processes of adipogenesis. In the early phase of adipogenesis, the expression level of Wnt6, which inhibits adipogenesis, increased by MAOC treatment in 3T3-L1 cells. To identify the gene regulatory mechanism, we assessed alterations in histone modifications upon MAOC treatment. Both global and local levels on the Wnt6 promoter region of histone H3 lysine 4 trimethylation, an active transcriptional histone marker, increased markedly by MAOC treatment in 3T3-L1 cells. Our findings identified an epigenetic event associated with inhibition of adipocyte generation by MAOC, suggesting its potential as an efficient therapeutic compound to cure obesity and metabolic diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Adipogenia/genética , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Estrutura Molecular , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética
15.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053721

RESUMO

Rosmarinic acid methyl ester (RAME), a derivative of rosmarinic acid (RA), is reported to have several therapeutic effects, including anti-tumor effects against cervical cancer. However, its anti-tumor effects in ovarian cancer is unclear. In this study, we studied the molecular pathways associated with the anti-tumor effects of RAME in ovarian cancer. To identify the effects of RAME in ovarian cancer, RNA sequencing was performed in RAME-treated ovarian cancer cells; we found that RAME treatment downregulated the genes closely involved with the target genes of the transcription factor Forkhead box M1 (FOXM1). It was reported that FOXM1 is overexpressed in a variety of cancer cells and is associated with cell proliferation and tumorigenesis. Therefore, we hypothesized that FOXM1 is a key target of RAME; this could result in its anti-tumor effects. Treatment of ovarian cancer cells with RAME-inhibited cell migration and invasion, as shown by wound healing and transwell migration assays. To examine whether RAME represses the action of FOXM1, we performed quantitative RT-PCR and ChIP-qPCR. Treatment of ovarian cancer cells with RAME decreased the mRNA expression of FOXM1 target genes and the binding of FOXM1 to its target genes. Moreover, FOXM1 expression was increased in cisplatin-resistant ovarian cancer cells, and combination treatment with RAME and cisplatin sensitized the cisplatin-resistant ovarian cancer cells, which was likely due to FOXM1 inhibition. Our research suggests that RAME is a promising option in treating ovarian cancer patients, as it revealed a novel molecular pathway underlying its anti-tumor effects.

16.
Viruses ; 12(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911874

RESUMO

Since the global outbreak of SARS-CoV-2 (COVID-19), infections of diverse human organs along with multiple symptoms continue to be reported. However, the susceptibility of the brain to SARS-CoV-2, and the mechanisms underlying neurological infection are still elusive. Here, we utilized human embryonic stem cell-derived brain organoids and monolayer cortical neurons to investigate infection of brain with pseudotyped SARS-CoV-2 viral particles. Spike-containing SARS-CoV-2 pseudovirus infected neural layers within brain organoids. The expression of ACE2, a host cell receptor for SARS-CoV-2, was sustained during the development of brain organoids, especially in the somas of mature neurons, while remaining rare in neural stem cells. However, pseudotyped SARS-CoV-2 was observed in the axon of neurons, which lack ACE2. Neural infectivity of SARS-CoV-2 pseudovirus did not increase in proportion to viral load, but only 10% of neurons were infected. Our findings demonstrate that brain organoids provide a useful model for investigating SARS-CoV-2 entry into the human brain and elucidating the susceptibility of the brain to SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Neurônios/virologia , Organoides/virologia , Prosencéfalo/virologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Enzima de Conversão de Angiotensina 2 , Axônios/enzimologia , Diferenciação Celular , Células Cultivadas , Córtex Cerebral/citologia , Células-Tronco Embrionárias/virologia , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/virologia , Neurônios/enzimologia , Peptidil Dipeptidase A/fisiologia , Prosencéfalo/citologia , Receptores Virais/fisiologia , SARS-CoV-2 , Carga Viral , Tropismo Viral , Internalização do Vírus
17.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825184

RESUMO

Cisplatin is the most frequently used agent for chemotherapy against cervical cancer. However, recurrent use of cisplatin induces resistance, representing a major hurdle in the treatment of cervical cancer. Our previous study revealed that HP1γ suppresses UBE2L3, an E2 ubiquitin conjugating enzyme, thereby enhancing the stability of tumor suppressor p53 specifically in cervical cancer cells. As a follow-up study of our previous findings, here we have identified that the pharmacological substances, leptomycin B and doxorubicin, can improve the sensitivity of cervical cancer cells to cisplatin inducing HP1γ-mediated elevation of p53. Leptomycin B, which inhibits the nuclear export of HP1γ, increased cisplatin-dependent apoptosis induction by promoting the activation of p53 signaling. We also found that doxorubicin, which induces the DNA damage response, promotes HP1γ-mediated silencing of UBE2L3 and increases p53 stability. These effects resulted from the nuclear translocation and binding of HP1γ on the UBE2L3 promoter. Doxorubicin sensitized the cisplatin-resistant cervical cancer cells, enhancing their p53 levels and rate of apoptosis when administered together with cisplatin. Our findings reveal a therapeutic strategy to target a specific molecular pathway that contributes to p53 degradation for the treatment of patients with cervical cancer, particularly with cisplatin resistance.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cisplatino/toxicidade , Resistencia a Medicamentos Antineoplásicos , Enzimas de Conjugação de Ubiquitina/metabolismo , Neoplasias do Colo do Útero/metabolismo , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Ácidos Graxos Insaturados/farmacologia , Feminino , Células HeLa , Humanos , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/genética
18.
Arch Pharm Res ; 43(9): 877-889, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32761309

RESUMO

Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/fisiologia , Animais , Encéfalo/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Malformações do Desenvolvimento Cortical do Grupo I/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Neurônios/patologia , Neurônios/transplante , Organoides/patologia , Organoides/fisiologia , Quimeras de Transplante
19.
Plants (Basel) ; 9(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646052

RESUMO

Carthamus tinctorius L. (Compositae; safflower or Hong Hua) has been used in Korean traditional medicine for maintaining the homeostasis of body circulation. Phytochemical investigation was performed on the florets of C. tinctorius by liquid chromatography-mass spectrometry (LC/MS), which afforded two dihydrophaseic acid glucosides (1 and 2). Isolated compounds were structurally confirmed using a combination of spectroscopic methods including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectroscopy. Their absolute configurations were established by quantum chemical electronic circular dichroism calculations and enzymatic hydrolysis. The anti-adipogenesis activity of the isolated compounds was evaluated using 3T3-L1 preadipocytes. Treatment with the dihydrophaseic acid glucoside (1) during adipocyte differentiation prevented the accumulation of lipid droplets and reduced the expression of adipogenic genes, Fabp4 and Adipsin. However, compound 2 did not affect adipogenesis. Our study yielded a dihydrophaseic acid glucoside derived from C. tinctorius, which has potential advantages for treating obesity.

20.
Cell Death Differ ; 27(9): 2537-2551, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32203172

RESUMO

E6 oncoprotein derived from high-risk human papillomavirus (HPV) drives the development of cervical cancer through p53 degradation. Because cervical cancer therapies to inactivate HPV or E6 protein are not available, alternative strategies are required. Here, we show that HPV-mediated nuclear export of human heterochromatin protein 1γ (HP1γ) reduces the stability of p53 through UBE2L3-mediated p53 polyubiquitination during cervical cancer progression. In general, HP1 plays a key role in heterochromatin formation and transcription in the nucleus. However, our immunostaining data showed that the majority of HP1γ is localized in the cytoplasm in HPV-mediated cervical cancer. We found that HPV E6 protein drives unusual nuclear export of HP1γ through the interaction between the NES sequence of HP1γ and exportin-1. The mutation of the NES sequence in HP1γ led to nuclear retention of HP1γ and reduced cervical cancer cell growth and tumor generation. We further discovered that HP1γ directly suppresses the expression of UBE2L3 which drives E6-mediated proteasomal degradation of p53 in cervical cancer. Downregulation of UBE2L3 by overexpression of HP1γ suppressed UBE2L3-dependent p53 degradation-promoting apoptosis of cervical cancer cells. Our findings propose a useful strategy to overcome p53 degradation in cervical cancer through the blockage of nuclear export of HP1γ.


Assuntos
Carcinogênese/patologia , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação para Baixo/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Transporte Ativo do Núcleo Celular , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Carioferinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Risco , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...