Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 852: 77-89, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30831079

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and high mortality, posing a major threat to human health. Increased levels of inflammatory cytokines, reactive oxygen species and coagulation cascade have been extensively reported in IPF. We previously fused Hirudin and human manganese superoxide dismutase (hSOD2) to generate a dual-feature fusion protein, denoted as rhSOD2-Hirudin fusion protein. In this study, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and Hydroxyproline (HYP) assays were used to investigate the effects of rhSOD2-Hirudin protein on thrombin-induced fibroblast proliferation and collagen accumulation in vitro. Subsequently, the mice model of pulmonary fibrosis induced by bleomycin was used for evaluating the anti-inflammatory and anti-fibrotic effects of rhSOD2-Hirudin protein in vivo. Results showed that rhSOD2-Hirudin protein could inhibit the proliferation of fibroblasts and reduce the HYP production in vitro by inhibiting the activity of thrombin. In vivo experiments showed that lung inflammation and fibrosis were significantly decreased in rhSOD2-Hirudin protein-treated mice. Furthermore, rhSOD2-Hirudin protein treatment reduced profibrotic protein and gene expression while reducing the number of inflammatory cells in the lung. In conclusion, rhSOD2-Hirudin protein can effectively attenuate pulmonary fibrosis in vitro and in vivo, mainly by inhibiting the activity of thrombin meanwhile increasing SOD2 levels prevent cells from being damaged by reactive oxygen species, thereby mitigating IPF progression. This study provided important information on the feasibility and efficacy of rhSOD2-Hirudin protein as a novel therapeutic agent for IPF.


Assuntos
Bleomicina/farmacologia , Hirudinas/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase/farmacologia , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiprolina/biossíntese , Camundongos , Células NIH 3T3 , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
2.
Biotechnol Appl Biochem ; 66(1): 21-32, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30192404

RESUMO

Lung cancer is a serious threat to human health. Studies have revealed that human manganese superoxide dismutase (hSOD2) and miRNAs play an essential role in the metastasis process of lung cancer. However, the miRNAs that associated with hSOD2 and involved in metastasis, remain elusive. After databases analysis and dual luciferase reporter validation, we demonstrated that miR-330-3p expression inversely correlated with hSOD2b expression level, and that miR-330-3p directly targeted the 3'untranslated region (3'UTR) of hSOD2b. Furthermore, overexpression of miR-330-3p promoted whereas knockdown of miR-330-3p inhibited invasion/migration and the epithelial-mesenchymal transition (EMT) process of lung cancer cells in vitro. Knockdown of miR-330-3p inhibited metastasis of lung cancer cells in vivo. Moreover, miR-330-3p-mediated enhancement of invasion/migration in 95-D cells could be rescued by over-expression of hSOD2. In conclusion, we demonstrated that miR-330-3p promoted metastasis of lung cancer cells by suppressing hSOD2b expression and unveiled a new clinical application of miR-330-3p in the therapy of lung cancer.


Assuntos
Movimento Celular , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Superóxido Dismutase/metabolismo , Células A549 , Transição Epitelial-Mesenquimal , Células HeLa , Células Hep G2 , Humanos , Células K562 , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Superóxido Dismutase/genética
3.
J Microbiol Biotechnol ; 26(11): 1881-1890, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27435539

RESUMO

Manganese superoxide dismutase (MnSOD) is a vital enzyme that protects cells from free radicals through eliminating superoxide radicals (O²â»). Hirudin, a kind of small active peptide molecule, is one of the strongest anticoagulants that can effectively cure thrombus diseases. In this study, we fused Hirudin to the C terminus of human MnSOD with the GGGGS linker to generate a novel dual-feature fusion protein, denoted as hMnSOD-Hirudin. The hMnSOD-Hirudin gene fragment was cloned into the pET15b (SmaI, CIAP) vector, forming a recombinant pET15b-hMnSOD-Hirudin plasmid, and then was transferred into Escherichia coli strain Rosetta-gami for expression. SDS-PAGE was used to detect the fusion protein, which was expected to be about 30 kDa upon IPTG induction. Furthermore, the hMnSOD-Hirudin protein was heavily detected as a soluble form in the supernatant. The purification rate observed after Ni NTA affinity chromatography was above 95%. The hMnSOD-Hirudin protein yield reached 67.25 mg per liter of bacterial culture. The identity of the purified protein was confirmed by western blotting. The hMnSOD-Hirudin protein activity assay evinced that the antioxidation activity of the hMnSOD-Hirudin protein obtained was 2,444.0 ± 96.0 U/mg, and the anticoagulant activity of the hMnSOD-Hirudin protein was 599.0 ± 35.0 ATU/mg. In addition, in vitro bioactivity assay showed that the hMnSODHirudin protein had no or little cytotoxicity in H9c2, HK-2, and H9 (human CD4⁺, T cell) cell lines. Transwell migration assay and invasion assay showed that the hMnSOD-Hirudin protein could suppress human lung cancer 95-D cell metastasis and invasion in vitro.


Assuntos
Hirudinas/genética , Neoplasias Pulmonares/tratamento farmacológico , Superóxido Dismutase/genética , Superóxido Dismutase/farmacologia , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hirudinas/metabolismo , Hirudinas/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Superóxido Dismutase/metabolismo
4.
Int J Mol Sci ; 17(1)2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703583

RESUMO

Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1) cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1). SaCSD1 comprised a complete open reading frame (ORF) of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%-90%) with the superoxide dismutase (CSD) of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I) vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO), glycerol, and chloroform, and was reduced to a great extent in ß-mercaptoethanol, sodium dodecyl sulfate (SDS), H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR) assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves.


Assuntos
Avicennia/enzimologia , Proteínas de Plantas/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Avicennia/genética , Sequência de Bases , Sequência Conservada , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tolerância ao Sal , Especificidade por Substrato , Superóxido Dismutase/química , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...