Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 262: 124668, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229815

RESUMO

It is necessary to develop sensitive and selective probes for real-time in vivo monitoring of hypochlorous acid (HClO) which plays a significant role in physiological and pathological processes. The second near-infrared (NIR-Ⅱ) luminescent silver chalcogenide quantum dots (QDs) have shown great potential in developing activatable nanoprobe for HClO in terms of their outstanding imaging performance in the living organism. However, the limited strategy for the construction of activatable nanoprobes severely restricts their widespread applications. Herein, we proposed a novel strategy for developing an activatable silver chalcogenide QDs nanoprobe for NIR-Ⅱ fluorescence imaging of HClO in vivo. The nanoprobe was fabricated by mixing an Au-precursor solution with Ag2Te@Ag2S QDs to allow cation exchange and release Ag ions and then reducing the released Ag ions on the QDs surface to form an Ag shell for quenching of the emission of QDs. The Ag shell of QDs was oxidized and etched in the presence of HClO, resulting in the disappearance of their quenching effect on QDs and the activation of the QDs emission. The developed nanoprobe enabled highly sensitive and selective determination of HClO and imaging of HClO in arthritis and peritonitis. This study provides a novel strategy for the construction of activatable nanoprobe based on QDs and a promising tool for NIR-Ⅱ imaging of HClO in vivo.


Assuntos
Ácido Hipocloroso , Pontos Quânticos , Prata , Imagem Óptica
2.
Biosens Bioelectron ; 224: 115062, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36646014

RESUMO

Gastric acid is an important functional substance secreted by the stomach of the living organisms, reflecting the gastric physiological condition. The sensing of gastric acid in vivo is of great significance for evaluation of gastric function, diagnosis and treatment of gastric diseases and maintenance of organism health but remains challenging due to the harsh acid and digestive environment of stomach. This study developed an activatable nanoprobe based on Au nanoclusters (Au NCs) for sensitive and real-time noninvasive near-infrared II (NIR-II) fluorescence imaging detection of gastric acid in vivo for the first time. The Au NCs were encapsulated by polydopamine to have enhanced NIR-II luminescence and high stability and combined with methylene blue to possess the pH responsiveness for gastric acid imaging. The developed nanoprobe could not only monitor gastric acid secretion in vivo but also imaging the changes of gastric acid caused by feeding, acid-inhibition drugs and gastric ulcer disease. This study provides a promising avenue for the improvement of the application performance of Au NCs and imaging analysis of gastric acid and related gastric diseases.


Assuntos
Técnicas Biossensoriais , Ácido Gástrico , Imagem Óptica/métodos
3.
RSC Adv ; 11(24): 14678-14685, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35423968

RESUMO

It is of vital importance to develop probes to monitor hypochlorous acid (HClO) in biological systems as HClO is associated with many important physiological and pathological processes. Metal nanoclusters (NCs) are promising luminescent nanomaterials for highly reactive oxygen species (hROS) detection on the basis of their strong reaction ability with hROS. However, metal NCs typically can respond to most common hROS and are susceptible to etching by biothiols, hindering their application in the construction of effective HClO probes. Herein, we proposed a strategy to develop a nanoprobe based on Au NCs for highly sensitive and selective detection of HClO. We synthesized luminescent benzyl mercaptan-stabilized Au NCs and encapsulated them with an amphiphilic polymer (DSPE-PEG). After encapsulation, an obvious emission enhancement and good resistance to the etching by biothiols for Au NCs were achieved. More importantly, the DSPE-PEG encapsulated Au NCs can be used as a nanoprobe for detection of HClO with good performance. The luminescence of the Au NCs was effectively and selectively quenched by HClO. A good linear relationship with the concentration of HClO in the range of 5-35 µM and a limit of detection (LOD) of 1.4 µM were obtained. Additionally, this nanoprobe was successfully used for bioimaging and monitoring of HClO changes in live cells, suggesting the application potential of the as-prepared amphiphilic polymer-encapsulated Au NCs for further HClO-related biomedical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...