Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
1.
Front Pharmacol ; 15: 1328142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828454

RESUMO

Purpose: The aim of this study was to evaluate the bioequivalence of two formulations of rupatadine (10-mg tablets) under fasting and fed conditions in healthy Chinese subjects. Methods: A total of 72 subjects were randomly assigned to the fasting cohort (n = 36) and fed cohort (n = 36). Each cohort includes four single-dose observation periods and 7-day washout intervals. Blood samples were collected at several timepoints for up to 72 h post-dose. The plasma concentration of rupatadine and the major active metabolites (desloratadine and 3-hydroxydesloratadine) were analyzed by a validated HPLC-MS/MS method. The non-compartmental analysis method was employed to determine the pharmacokinetic parameters. Based on the within-subject standard deviation of the reference formulation, a reference-scaled average bioequivalence or average bioequivalence method was used to evaluate the bioequivalence of the two formulations. Results: For the fasting status, the reference-scaled average bioequivalence method was used to evaluate the bioequivalence of the maximum observed rupatadine concentration (Cmax; subject standard deviation > 0.294), while the average bioequivalence method was used to evaluate the bioequivalence of the area under the rupatadine concentration-time curve from time 0 to the last detectable concentration (AUC0-t) and from time 0 to infinity (AUC0-∞). The geometric mean ratio (GMR) of the test/reference for Cmax was 95.91%, and the upper bound of the 95% confidence interval was 95.91%. For AUC0-t and AUC0-∞ comparisons, the GMR and 90% confidence interval (CI) were 98.76% (93.88%-103.90%) and 98.71% (93.93%-103.75%), respectively. For the fed status, the subject standard deviation values of Cmax, AUC0-t, and AUC0-∞ were all <0.294; therefore, the average bioequivalence method was used. The GMR and 90% CI for Cmax, AUC0-t, and AUC0-∞ were 101.19% (91.64%-111.74%), 98.80% (94.47%-103.33%), and 98.63% (94.42%-103.03%), respectively. The two-sided 90% CI of the GMR for primary pharmacokinetic endpoints of desloratadine and 3-hydroxydesloratadine was also within 80%-125% for each cohort. These results met the bioequivalence criteria for highly variable drugs. All adverse events (AEs) were mild and transient. Conclusion: The test drug rupatadine fumarate showed a similar safety profile to the reference drug Wystamm® (J. Uriach y Compañía, S.A., Spain), and its pharmacokinetic bioequivalence was confirmed in healthy Chinese subjects based on fasting and postprandial status. Clinical trial registration: http://www.chinadrugtrials.org.cn/index.html, identifier CTR20213217.

2.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860876

RESUMO

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Assuntos
Adenocarcinoma de Pulmão , DNA , Neoplasias Pulmonares , Nanotubos , Polietilenoimina , Proteínas Proto-Oncogênicas p21(ras) , RNA Interferente Pequeno , Polietilenoimina/química , Humanos , Nanotubos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , DNA/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química
3.
Brain ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875478

RESUMO

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

4.
Heliyon ; 10(10): e31192, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813236

RESUMO

Background: This study aimed to explore the expression level and transcriptional regulation mechanism of Extra Spindle Pole Bodies Like 1 (ESPL1) in bladder cancer (BC). Methods: A multicentre database of samples (n = 1391) was assayed for ESPL1 mRNA expression in BC and validated at the protein level by immunohistochemical (IHC) staining of in-house samples (n = 202). Single-cell sequencing (scRNA-seq) analysis and enrichment analysis explored ESPL1 distribution and their accompanying molecular mechanisms. ATAC-seq, ChIP-seq and Hi-C data from multiple platforms were used to investigate ESPL1 upstream transcription factors (TFs) and potential epigenetic regulatory mechanisms. Immune-related analysis, drug sensitivity and molecular docking of ESPL1 were also calculated. Furthermore, upstream microRNAs and the binding sites of ESPL1 were predicted. The expression level and early screening efficacy of miR-299-5p in blood (n = 6625) and tissues (n = 537) were examined. Results: ESPL1 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 0.75; 95 % CI = 0.09, 1.40), and IHC staining of in-house samples verified this finding (p < 0.0001). ESPL1 was predominantly distributed in BC epithelial cells. Coexpressed genes of ESPL1 were enriched in cell cycle-related signalling pathways, and ESPL1 might be involved in the communication between epithelial and residual cells in the Hippo, ErbB, PI3K-Akt and Ras signalling pathways. Three TFs (H2AZ, IRF5 and HIF1A) were detected upstream of ESPL1 and presence of promoter-super enhancer and promoter-typical enhancer loops. ESPL1 expression was correlated with various immune cell infiltration levels. ESPL1 expression might promote BC growth and affect the sensitivity and therapeutic efficacy of paclitaxel and gemcitabine in BC patients. As an upstream regulator of ESPL1, miR-299-5p expression was downregulated in both the blood and tissues, possessing great potential for early screening. Conclusions: ESPL1 expression was upregulated in BC and was mainly distributed in epithelial cells. Elevated ESPL1 expression was associated with TFs at the upstream transcription start site (TSS) and distant chromatin loops of regulatory elements. ESPL1 might be an immune-related predictive and diagnostic marker for BC, and the overexpression of ESPL1 played a cancer-promoting role and affected BC patients' sensitivity to drug therapy. miR-299-5p was downregulated in BC blood and tissues and was also expected to be a novel marker for early screening.

5.
Sci Rep ; 14(1): 7638, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561452

RESUMO

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Masculino , Feminino , Humanos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , Fenótipo , Atrofia , RNA de Transferência , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
6.
Cell Death Discov ; 10(1): 190, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653740

RESUMO

Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.

7.
ACS Omega ; 9(10): 11356-11365, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496926

RESUMO

An efficient protocol for photocatalytic degradation of organic dyes and antibiotics has been successfully established via MOF-derived (MOF = metal-organic framework) Ni, Co-embedded N-doped bimetallic porous carbon nanocomposites (NiCo/NC). Such a NiCo/NC nanocomposite features well-distributed structures, suitable specific surface areas, and more active sites determined by various characterization analyses. The catalyst exhibits higher photocatalytic performance and stability toward the liquid-phase degradation of methylene blue (MB) under visible light irradiation for 60 min, after the adsorption-desorption equilibrium and the thorough degradation into H2O and CO2. Radical quenching experiments further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the MB photodegradation process. NiCo/NC was also appropriate for the degradation of Rhodamine B, methyl orange, tetracycline hydrochloride, and norfloxacin. Moreover, NiCo/NC is robust, and its photocatalytic activity is basically maintained after 8 cycles. This work is expected to provide additional information for the design of MOF-derived carbon material with more excellent properties and lay the foundation for further industrial applications.

8.
J Gastrointestin Liver Dis ; 33(1): 44-56, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554427

RESUMO

BACKGROUND AND AIMS: The incidence and mortality of hepatocellular carcinoma (HCC) are increasing. It is urgent to develop more effective HCC biomarkers for diagnosis and treatment. This project intends to verify the expression of enhancer of zeste 1 polycomb repressive complex 2 subunit (EZH1) and its mechanism in HCC. METHODS: This study integrates global microarray and high-throughput sequencing datasets, combined with internal immunohistochemistry, to analyze the expression and prognostic value of EZH1 in HCC. Functional enrichment analysis was conducted to investigate transcriptional targets, which were achieved by intersecting HCC over-expressed genes, EZH1 co-expressed genes and putative transcriptional targets. The relationship between EZH1 and anticancer drugs was detected by drug sensitivity analysis. RESULTS: In this study, 84 datasets from 40 platforms (3,926 HCC samples and 3,428 non-cancerous liver tissues) were included to show the high expression of EZH1 in HCC. Immunohistochemistry with 159 HCC samples and 62 non-HCC samples confirmed the high expression level. HCC patients with high EZH1 expression had worse survival prognoses. Gene ontology and Reactome analysis revealed that metabolism-related pathways, including autophagy, are critical for HCC. Interestingly, as one of the EZH1 potential transcriptional targets, autophagy-related 7 (ATG7) appeared in the above pathways. ATG7 was positively correlated with EZH1, upregulated in HCC, and mediated poor prognosis. Upregulation of EZH1 was found to be in contact with HCC anti-tumor drug resistance. CONCLUSIONS: The upregulation of EZH1 expression can promote the occurrence of HCC and lead to poor clinical progression and drug resistance; these effects may be mediated by regulating ATG7.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regulação para Cima , Relevância Clínica , Prognóstico , Regulação Neoplásica da Expressão Gênica
9.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499142

RESUMO

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Assuntos
Carcinoma , Neoplasias Pulmonares , Neoplasias Gástricas , Camundongos , Animais , Metionina/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Neoplasias Gástricas/patologia , Racemetionina , Enxofre , Neoplasias Pulmonares/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
10.
Mol Neurobiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520610

RESUMO

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

11.
Clin Transl Oncol ; 26(6): 1519-1531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38206516

RESUMO

BACKGROUND: Although it has been shown that cyclin dependent kinase inhibitor 2A (CDKN2A) plays a significant role in a number of malignancies, its clinicopathological value and function in small cell lung cancer (SCLC) is unclear and warrants additional research. METHODS: The clinical significance of CDKN2A expression in SCLC was examined by multiple methods, including comprehensive integration of mRNA level by high throughput data, Kaplan-Meier survival analysis for prognostic value, and validation of its protein expression using in-house immunohistochemistry. RESULTS: The expression of CDKN2A mRNA in 357 cases of SCLC was evidently higher than that in the control group (n = 525) combing the data from 20 research centers worldwide. The standardized mean difference (SMD) was 3.07, and the area under the curve (AUC) of summary receiver operating characteristic curve (sROC) was 0.97 for the overexpression of CDKN2A. ACC, COAD, KICH, KIRC, PCPG, PRAD, UCEC, UVM patients with higher CDKN2A expression had considerably worse overall survival rates than those with lower CDKN2A expression with the hazard ratio (HR) > 1. CONCLUSION: CDKN2A upregulation extensively enhances the carcinogenesis and progression of SCLC.


Assuntos
Biomarcadores Tumorais , Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/mortalidade , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Feminino , Masculino , Estimativa de Kaplan-Meier , Curva ROC , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pessoa de Meia-Idade , Taxa de Sobrevida , Estudos Prospectivos , Idoso , Estudos de Casos e Controles , Relevância Clínica
12.
J Cancer ; 15(1): 126-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164289

RESUMO

Background: KIAA1429, a member of the RNA methyltransferase complex, is involved in cancer progression; however, the clinical significance and underlying mechanism of KIAA1429 in osteosarcoma (OS) remains to be reported. Methods: We evaluated the clinical significance of KIAA1429 in OS by performing RT-qPCR, microarray, and RNA sequencing and using published data as a reference. Two KIAA1429-targeting siRNA constructs were transfected into SW1353 cells. CCK-8 assay, colony formation assays, flow cytometry and the xenograft mouse model were conducted to investigate the biological function of KIAA1429 in OS. Results: The mRNA expression of KIAA1429 was markedly upregulated in 250 OS samples as compared to that in 71 non-cancer samples (standardized mean difference = 0.67). Summary receiver operating characteristic curve analysis revealed that KIAA1429 exhibited reliable diagnostic capacity to differentiate OS samples from non-cancer samples (area under the curve = 0.83). Further, survival analysis indicated that KIAA1429 overexpression was associated with shorter overall survival time. Knocking down KIAA1429 reduced m6A methylation levels, inhibited proliferation, prevented the growth of tumors in vivo and accelerated apoptosis of OS cells. In total, 395 KIAA1429-related genes were identified among co-expressed genes and differentially expressed genes, which were enriched in the cell cycle pathway. Protein-protein interaction network analysis showed that CDK1, CCNA2, and CCNB1 were KIAA1429-related genes, serving as major network hubs in OS. Conclusions: Our findings indicate that KIAA1429 plays an oncogenic role in OS and potentially facilitates OS progression via a mechanism that involves regulating CDK1, CCNA2, and CCNB1.

13.
Seizure ; 116: 93-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37643945

RESUMO

OBJECTIVES: Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS: Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS: Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION: This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.


Assuntos
Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Masculino , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Epilepsia/complicações , Epilepsia/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Epilepsia Generalizada/genética , Fenótipo
14.
Biol Chem ; 405(4): 257-265, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37943731

RESUMO

The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for in vitro experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for in vivo experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation in vivo compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.


Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metionina/metabolismo , Metionina/farmacologia , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Proteínas Nucleares/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Neoplasias Gástricas/metabolismo , Proteínas com Motivo Tripartido/metabolismo
15.
Clin Pharmacol Drug Dev ; 13(2): 190-196, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37691309

RESUMO

This study aimed to compare the pharmacokinetics and bioavailability of 2 formulations: a fixed-dose combination tablet containing allisartan isoproxil (AI) and indapamide sustained-release (SR), and a monotherapy combination of AI and indapamide SR, in healthy Chinese subjects. A monocentric, open-label, single-dose, randomized, 2-way crossover study design was implemented. A total of 38 healthy male and female volunteers were equally divided into 2 treatment sequences. The analysis of plasma concentrations was conducted using a nonstereospecific liquid chromatography/tandem mass spectrometric method. The primary pharmacokinetic parameters were calculated using a noncompartmental model. Safety assessments were performed throughout the study. For the fixed-dose combination and monotherapy combination, the mean values of EXP3174 (metabolite of AI) Cmax , AUC0-t , and AUC0-∞ were 987 and 999 ng/mL, 8059 and 7749 ng/mL h, and 8332 and 8007 ng/mL h, respectively. The corresponding values for indapamide were 27 and 32 ng/mL, 1002 and 1105 ng/mL h, and 1080 and 1172 ng/mL h. No serious adverse events were reported during the study. The combination tablet containing 240 mg of AI and 1.5 mg of indapamide SR met the bioequivalence standards. Additionally, both formulations were tolerated and had good safety profiles in the research.


Assuntos
Compostos de Bifenilo , Imidazóis , Indapamida , Humanos , Masculino , Feminino , Disponibilidade Biológica , Indapamida/efeitos adversos , Indapamida/farmacocinética , Estudos Cross-Over , Preparações de Ação Retardada , Comprimidos , Voluntários , China
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013604

RESUMO

Aim To investigate the effect of quercetin on the aging model of bone marrow mesenchymal stem cells established under microgravity. Methods Using 3D gyroscope, a aging model of bone marrow mesenchymal stem cells was constructed, and after receiving quercetin and microgravity treatment, the anti-aging effect of the quercetin was evaluated by detecting related proteins and oxidation indexes. Results Compared to the control group, the expressions of age-related proteins p21, pi6, p53 and RB in the microgravity group significantly increased, while the expressions of cyclin D1 and lamin B1 significantly decreased, with statistical significance (P<0.05). In the microgravity group, mitochondrial membrane potential significantly decreased (P<0.05), ROS accumulation significantly increased (P <0.05), SOD content significantly decreased and MDA content significantly increased (P<0.05). Compared to the microgravity group, the expressions of age-related proteins p21, pi6, p53 and RB in the quercetin group significantly decreased, while the expressions of cyclin D1 and lamin B1 significantly increased, with statistical significance (P<0.05). In the quercetin group, mitochondrial membrane potential significantly increased (P<0.05), ROS accumulation significantly decreased (P<0.05), SOD content significantly increased and MDA content significantly decreased (P<0.05). Conclusions Quercetin can resist oxidation, protect mitochondrial function and normal cell cycle, thus delaying the aging of bone marrow mesenchymal stem cells induced by microgravity.

17.
JOURNAL OF RARE DISEASES ; (4): 136-143, 2024.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1006911

RESUMO

Visual snow syndrome(VSS)is a visual-disturbance disease characterized by continuous flickering tiny dots in the entire visual field, sometimes with visual symptoms like photophobia or nyctalopia and non-visual symptoms such as anxiety and depression.VSS can remain stable or worsen, causing distress to patients′ visual experience and mental state. The pathological mechanism of VSS is still unclear and a hypothesis indicates a relationship between VSS and increased cortical excitability of the visual cortex. Some case reports suggest anti-seizure medications, colored filters and TMS may help eliminate symptoms, but futher studies are required to verify these treatments. This review will systematically introduce what we know about VSS so far.

18.
Eur J Med Res ; 28(1): 591, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102653

RESUMO

BACKGROUND: Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS: We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS: Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS: TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA/genética , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Imuno-Histoquímica , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , RNA Mensageiro/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
19.
Mol Biotechnol ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847361

RESUMO

Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.

20.
Clin Pharmacol Drug Dev ; 12(11): 1051-1059, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814929

RESUMO

Allisartan isoproxil (AI) is an angiotensin II type 1 receptor blocker and be converted into the active substance EXP3174 in vivo. We evaluated the drug-drug interactions of AI and an indapamide sustained-release (Ind SR) preparation, as well as the pharmacokinetic characteristics and safety of AI and Ind SR in healthy subjects. The trial was set up in 6 sequences and 3 cycles, and each cycle contained a 7-day washout period. Subjects received 3 different trial drugs (A, AI; B, Ind SR; C, AI + Ind SR) during 3 different cycles. Twenty-four subjects were enrolled in the clinical trial. Of these, 22 completed the study, 2 subjects dropped out due to adverse events (AEs). For subjects given AI alone or combined with Ind SR, the pharmacogenetic parameters Cmax and the geometric mean ratio of steady state (combined/single) of EXP3174 was 130%. The geometric mean ratio of area under the concentration-time curve over the dosing interval at steady state (combined/single use) was 144.5%. Therefore, the combination of Ind SR had an impact on the pharmacokinetics of AI. Then, the results indicated that the AI combination had no effect on the pharmacokinetics of Ind SR. Serious AEs did not occur. The AEs in this clinical trial were the same as those for AI and Ind SR. Combined administration resulted in 2 cases (2 subjects) of Grade 3 hypotension and 1 case of Grade 3 hypotension with AI alone. Considering that this trial included healthy volunteers, the risk of hypotension was expected to be manageable.


Assuntos
Hipotensão , Indapamida , Humanos , Indapamida/efeitos adversos , Indapamida/farmacocinética , Preparações de Ação Retardada , Interações Medicamentosas , Hipotensão/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...