Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687339

RESUMO

The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.

2.
Phytomedicine ; 109: 154544, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610155

RESUMO

BACKGROUND: Pinnatifolone A is a typical sesquiterpenoid and the primary active ingredient of Syringa oblata Lindl., has potent anti-inflammatory activity. However, Pinnatifolone A pharmacokinetic and metabolites analysis investigations in male and female rats, as well as its in vitro stability in male and female rat liver microsomes, have not been evaluated and compared. PURPOSE: To investigate preclinical pharmacokinetic and metabolite in both genders, confirm gender differences, and provide usable information for the development of clinical applications. METHODS: A quick, precise, and sensitive LC-MS/MS method was created and effectively used to determine the pharmacokinetics of oral (140 mg/kg) and intravenous (6.3 mg/kg) Pinnatifolone A in male and female rats, in vitro Pinnatifolone A elimination studies in male and female rat liver microsomes. Following that, a UHPLC-Q-TOF-MS/MS technique was established to identify the metabolic profiles of Pinnatifolone A obtained from rat plasma and excreta. RESULTS: In the current study, we established for the first time an LC-MS/MS method for the quantitation of Pinnatifolone A with acceptable linearity and selectivity, recovery and matrix effect, accuracy and precision. The absolute oral bioavailability of Pinnatifolone A was approximately 30.36% in female rats, the clearance (CL) was 20.99±3.33 l/h/kg in female rats and 472.37±437.31 l/h/kg in male rats. This difference in rat genders may pertain to the sex-specific expression of hepatic enzymes as demonstrated in the metabolic stability evaluation in the present research; the male rats exhibited higher CLint(mic) (158.83±9.57 µl/min/mg protein) than female rats (76.47±7.90 µl/min/mg protein) liver microsomes, indicating higher Pinnatifolone A clearance in male rats. Twenty-four metabolites were detected and identified in female and male rats; N-acetylcysteine conjugation metabolite was the most abundant metabolites in both rat feces and urine. Furthermore, male and female rats had significantly different levels of the N-acetylcysteine conjugation metabolite. Hydrogenation metabolite was particular to female rats both in rat fecal and urine. Glucuronide conjugation metabolite was the predominant metabolite in rat plasma, and its amount in female rats was double that of male rats. CONCLUSIONS: The present research is the first to report the preclinical pharmacokinetics and metabolites of Pinnatifolone A in male and female rats, confirming the gender-based differences. The findings provide a comprehensive overview for further understanding of the pharmacokinetic and metabolic characteristics of Pinnatifolone A and serve as a guide for its future development and utilization.


Assuntos
Acetilcisteína , Espectrometria de Massas em Tandem , Ratos , Feminino , Masculino , Animais , Espectrometria de Massas em Tandem/métodos , Disponibilidade Biológica , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Fatores Sexuais , Administração Oral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...