Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 13, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429752

RESUMO

Bathyarchaeia (formerly Bathyarchaeota) is a group of highly abundant archaeal communities that play important roles in global biogeochemical cycling. Bathyarchaeia is predominantly found in sediments and hot springs. However, their presence in arable soils is relatively limited. In this study, we aimed to investigate the spatial distributions and diversity of Bathyarchaeia in paddy soils across eastern China, which is a major rice production region. The relative abundance of Bathyarchaeia among total archaea ranged from 3 to 68% in paddy soils, and Bathy-6 was the dominant subgroup among the Bathyarchaeia (70-80% of all sequences). Bathyarchaeia showed higher migration ability and wider niche width based on the neutral and null model simulations. Bathy-6 was primarily assembled by deterministic processes. Soil pH and C/N ratio were identified as key factors influencing the Bathyarchaeia composition, whereas C/N ratio and mean annual temperature influenced the relative abundance of Bathyarchaeia. Network analysis showed that specific Bathyarchaeia taxa occupied keystone positions in the archaeal community and co-occurred with some methanogenic archaea, including Methanosarcina and Methanobacteria, and ammonia-oxidizing archaea belonging to Nitrososphaeria. This study provides important insights into the biogeography and niche differentiation of Bathyarchaeia particularly in paddy soil ecosystems.

2.
mSystems ; 8(3): e0014323, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246882

RESUMO

Bathyarchaeota, known as key participants of global elements cycling, is highly abundant and diverse in the sedimentary environments. Bathyarchaeota has been the research spotlight on sedimentary microbiology; however, its distribution in arable soils is far from understanding. Paddy soil is a habitat similar to freshwater sediments, while the distribution and composition of Bathyarchaeota in paddy soils have largely been overlooked. In this study, we collected 342 in situ paddy soil sequencing data worldwide to illuminate the distribution patterns of Bathyarchaeota and explore their potential ecological functions in paddy soils. The results showed that Bathyarchaeota is the dominant archaeal lineage, and Bathy-6 is the most predominant subgroup in paddy soils. Based on random forest analysis and construction of a multivariate regression tree, the mean annual precipitation and mean annual temperature are identified as the factors significantly influencing the abundance and composition of Bathyarchaeota in paddy soils. Bathy-6 was abundant in temperate environments, while other subgroups were more abundant in sites with higher rainfall. There are highly frequent associations between Bathyarchaeota and methanogens and ammonia-oxidizing archaea. The interactions between Bathyarchaeota and microorganisms involved in carbon and nitrogen metabolism imply a potential syntrophy between these microorganisms, suggesting that members of Bathyarchaeota could be important participants of geochemical cycle in paddy soils. These results shed light on the ecological lifestyle of Bathyarchaeota in paddy soils, and provide some baseline for further understanding Bathyarchaeota in arable soils. IMPORTANCE Bathyarchaeota, the dominant archaeal lineage in sedimentary environments, has been the spotlight of microbial research due to its vital role in carbon cycling. Although Bathyarchaeota has been also detected in paddy soils worldwide, its distribution in this environment has not yet been investigated. In this study, we conducted a global scale meta-analysis and found that Bathyarchaeota is also the dominant archaeal lineage in paddy soils with significant regional abundance differences. Bathy-6 is the most predominant subgroup in paddy soils, which differs from sediments. Furthermore, Bathyarchaeota are highly associated with methanogens and ammonia-oxidizing archaea, suggesting that they may be involved in the carbon and nitrogen cycle in paddy soil. These interactions provide insight into the ecological functions of Bathyarchaeota in paddy soils, which will be the foundation of future studies regarding the geochemical cycle in arable soils and global climate change.


Assuntos
Euryarchaeota , Solo , Humanos , Solo/química , Amônia/metabolismo , Archaea/metabolismo , Meio Ambiente , Euryarchaeota/metabolismo , Carbono/metabolismo
3.
Front Microbiol ; 14: 1065302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992926

RESUMO

Introduction: The microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood. Methods: Here, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified. Results: Our findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa. Conclusion: Our study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.

4.
J Environ Sci (China) ; 109: 171-180, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607666

RESUMO

Polymyxin B (PMB) is considered as the last line of antibiotic defense available to humans. The environmental effects of the combined pollution with PMB and heavy metals and their interaction mechanisms are unclear. We explored the effects of the combined pollution with PMB and arsenic (As) on the microbial composition of the soil and in the earthworm gut, as well as the spread and transmission of antibiotic resistance genes (ARGs). The results showed that, compared with As alone, the combined addition of PMB and As could significantly increase the bioaccumulation factor and toxicity of As in earthworm tissues by 12.1% and 16.0%, respectively. PMB treatment could significantly increase the abundance of Actinobacteria in the earthworm gut (from 35.6% to 45.2%), and As stress could significantly increase the abundance of Proteobacteria (from 19.8% to 56.9%). PMB and As stress both could significantly increase the abundance of ARGs and mobile genetic elements (MGEs), which were positively correlated, indicating that ARGs might be horizontally transferred. The inactivation of antibiotics was the main resistance mechanism that microbes use to resist PMB and As stress. Network analysis showed that PMB and As might have antagonistic effects through competition with multi-drug resistant ARGs. The combined pollution by PMB and As significantly promoted the relative abundance of microbes carrying multi-drug resistant ARGs and MGEs, thereby increasing the risk of transmission of ARGs. This research advances the understanding of the interaction mechanism between antibiotics and heavy metals and provides new theoretical guidance for the environmental risk assessment and combined pollution management.


Assuntos
Arsênio , Microbioma Gastrointestinal , Oligoquetos , Animais , Antibacterianos/toxicidade , Arsênio/toxicidade , Genes Bacterianos , Polimixina B/toxicidade , Solo
5.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 455-470, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32237540

RESUMO

Soil is the material basis for human survival. However, in China, soils are wildly polluted by heavy metals, which poses serious health risks to humans. Bioremediation of heavy-metal contaminated soil is widely considered as a sustainable remediation strategy, but low remediation efficiency is still a scientific bottleneck of bioremediation. There are abundant microorganisms, plants and animals living in soils. Among these soil biota, there are complex interactions to form an intricate food web through material circulation and energy transfer. These interactions among soil biota affect the transportation and transformation of pollutants in soil, and consequently influence the bioremediation efficiency. The synergistic remediation by soil biota combines the advantages of diferent organisms to enhance the efficiency of bioremediation. In this paper, the interactions among soil biota and their influence on heavy-metal transportation and transformation, as well as bioremediation efficiency are reviewed. We also propose perspectives for future researches, including targeted regulating the structure of soil food web, improving the bioremediation efficiency of heavy-metal contaminated soil, and building a synergistic remediation technology with multi-organisms based on food web.


Assuntos
Biodegradação Ambiental , Biota , Metais Pesados , Poluentes do Solo , Animais , Biota/fisiologia , China , Metais Pesados/metabolismo , Solo , Poluentes do Solo/metabolismo
6.
J Hazard Mater ; 373: 591-599, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952004

RESUMO

Humic acid (HA) and fulvic acid (FA) are dominating humic substances (HS) in soil. In this study, the effects of HA and FA addition (0.2%-1.5%) on arsenic (As) mobility and microbial community composition in paddy soil were investigated. FA significantly increased the concentrations of As (12-fold), iron (Fe; 20-fold), manganese (Mn; 3-fold) and acetic acid (3-fold) in soil porewater, and also caused significant enrichment of Desulfitobacterium (41-fold). Furthermore, the FA addition significantly increased the relative abundance of Bathyarchaeota (4-fold), a microorganism that is suggested to be important for FA degradation. In contrast, HA slightly increased As (1.2-fold) in porewater, had little effect on Fe, Mn and acetic acid, and 1.5% HA addition significantly decreased As in porewater at day 14 (45%). Both HA and FA addition promoted As methylation. HA increased dimethylarsenate concentration and FA increased monomethylarsenate concentration in porewater. These results highlight the contrasting effects of different (HA vs. FA) organic substances on As fate in paddy soil and advance our understanding of the associations among As, Fe and organic substances through microorganisms in paddy soil.


Assuntos
Arsênio/metabolismo , Substâncias Húmicas/análise , Ferro/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...