Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 335: 139091, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268231

RESUMO

Clay sediment is removed by dredging, resulting in the disposal of enormous waste sediment clay slurries that consumes land space, as well as risks the human health and the environment. Manganese (Mn) is often identified in clay slurries. Quicklime (CaO)-activated ground granulated blast-furnace slag (GGBS) can be used to stabilize/solidify (S/S) contaminated soils; nevertheless, few studies have been published on the S/S of Mn-contaminated clay slurries using CaO-GGBS. Moreover, the anions contained in clay slurries may affect the S/S efficiency of CaO-GGBS in treating Mn-contaminated clay slurries, but this effect has hardly been investigated. Therefore, this study investigated the S/S efficiency of CaO-GGBS in treating MnSO4-bearing and Mn(NO3)2-bearing clay slurries. The effect of anions (i.e. SO42- and NO3-) on the strength, leachability, mineralogy, and microstructure of Mn-contaminated clay slurries treated with CaO-GGBS was explored. Results showed that CaO-GGBS could improve the strength of both Mn-contaminated slurries to meet the strength requirement for landfill waste outlined by United States Environmental Protection Agency (USEPA). The Mn leachabilities of both Mn-contaminated slurries were decreased to be less than the Euro limit for drinking water after cured for 56 days. The MnSO4-bearing slurry generally produced higher UCS while lower Mn leachability than Mn(NO3)2-bearing slurry at the same CaO-GGBS addition. CSH and Mn(OH)2 were formed, thereby enhancing strength and reducing leachability of Mn. Ettringite in CaO-GGBS-treated MnSO4-bearing slurry, which was formed by the supply of SO42- from MnSO4, further contributed to the strength enhancement and the decrease of Mn leachability. Ettringite was the factor leading to the difference in strength and leaching properties between MnSO4-bearing and Mn(NO3)2-bearing clay slurries. Hence, anions contained in Mn-contaminated slurries significantly affected the strength and the Mn leachability, and need to be identified before CaO-GGBS was used to treat such slurries.


Assuntos
Manganês , Minerais , Estados Unidos , Humanos , Argila/química
2.
Environ Pollut ; 320: 121043, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627047

RESUMO

Gasification fly ash (GFA) is a hazardous solid residue generated in the slagging-gasification of municipal solid waste (MSW). GFA contains higher amounts of heavy metals such as Pb and Zn than incineration fly ash (IFA), which increases the difficulty of heavy metal immobilization but simultaneously makes it a potential feedstock for metal recovery. Water washing and acid washing are conventional and economic methods to treat wastes with high heavy metal and chloride contents. However, the research on the effects of such methods in treating GFA is still blank. Hence, in this study, water washing and acid washing of GFA were investigated in detail. Heavy metal behaviors at different time points during the washing processes were studied in a wide pH range and comprehensive characterizations of washed GFAs were also conducted. The results show that different re-precipitates could be identified in washed GFAs depending on different pH conditions. After water washing for 24 h, more than 60% of Zn in GFA would dissolve and re-precipitate into calcium zincate. It is also revealed that the precipitation effect could in turn influence the pH during the washing process. After acid washing with a low-concentration acid, heavy metal leachabilities were found reduced due to the pH and precipitation effect. High-concentration acid washing could effectively extract Zn and Cd with extraction ratios exceeding 90%. Applying 1.2 M-HCl washing, a short washing period of 15 min could realize a Pb extraction ratio of 81.2%, much higher than 53.2% when extending the washing period to 24 h.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Material Particulado/química , Água , Chumbo , Metais Pesados/análise , Incineração , Carbono/química , Eliminação de Resíduos/métodos
3.
Chemosphere ; 308(Pt 2): 136387, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088964

RESUMO

Global sustainable development faces challenges in greenhouse gas emissions, consumption of energy and non-renewable resources, environmental pollution, and waste landfilling. Current technologies for immobilization of heavy metals face similar challenges; for example, the use of cement, magnesia, lime, and other binders for immobilization of heavy metals is associated with carbon dioxide emission and consumption of limestone/magnesite and energy. In these contexts, this study introduced a novel and sustainable method for immobilization of lead (Pb) by using an industrial solid waste (ladle furnace slag, LFS) and a greenhouse gas (carbon dioxide). In this laboratory investigation, LFS was first mixed with the lead nitrate and then treated by conventional curing (without carbon dioxide) and carbonation curing (with carbon dioxide) for different periods. The treated LFS were then analyzed by various chemical analyses and microanalysis. The results showed that LFS with conventional curing is not effective in immobilization of lead, while LFS with carbonation curing can effectively immobilize lead. The leaching concentrations of Pb from carbonated LFS were four orders of magnitude lower than those with conventional curing. LFS can achieve carbon dioxide uptake of up to 8% of LFS mass. During the carbonation process, carbonates were produced and wrapped LFS particles to prevent the release of lead, lead nitrate was also carbonated into lead carbonate, and the pH of LFS was reduced to 9.36-9.58, close to the minimum solubility of lead carbonate; these are the main reasons for lead immobilization. In summary, the use of LFS with carbon dioxide for immobilization of lead can not only sequester carbon dioxide, but also reduce the cost of binders, non-renewable resource consumption, energy use, and LFS landfilling.


Assuntos
Gases de Efeito Estufa , Metais Pesados , Carbonato de Cálcio/análise , Dióxido de Carbono/análise , Carbonatos/análise , Gases de Efeito Estufa/análise , Resíduos Industriais/análise , Chumbo/análise , Óxido de Magnésio , Metais Pesados/análise , Nitratos/análise , Resíduos Sólidos/análise
4.
Environ Pollut ; 308: 119662, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752393

RESUMO

Carbon capture has become an important technology to mitigate ever-increasing CO2 emissions worldwide, and alkali waste is a potential source of CO2 capture material. Slagging-gasification is a novel technology for treating municipal solid waste (MSW), and the gasification fly ash (GFA) is the only solid residue that is not reused at present due to its high heavy metal content. GFA contains high amounts of Ca(OH)2 and Ca(OH)Cl, making it protentional for CO2 capture. In this study, GFA and washed gasification fly ash (WGFA) were treated with CO2 for different treatment periods. Weight changes of samples were recorded to evaluate the efficiency of CO2 capture. To assess the properties of treated GFA, pH value, leached heavy metal concentration, mineral composition, and microscopic morphology were studied. The results revealed that GFA and WGFA could adsorb 18.8% and 23.7% CO2 of their weights, respectively. Carbonation could immobilize heavy metals including Pb, Zn, and Cu when a proper treatment period was applied. An excessive treatment period decreased the efficiency of heavy metal immobilization. Pre-washing is recommended as a pre-treatment method for GFA carbonation, which increased the efficiency to adsorb CO2, improved the pH of carbonated GFA, and enhanced the effect to immobilize heavy metals.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono/química , Dióxido de Carbono/química , Carbonatos/química , Cinza de Carvão/química , Incineração/métodos , Metais Pesados/análise , Material Particulado/química , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise
5.
Waste Manag ; 146: 44-52, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561542

RESUMO

Slagging-gasification has received increasing attention as a municipal solid waste treatment technology. Compared with incineration, slagging-gasification can produce valuable syngas and generates by-products that can be easier reusable in different applications in some cases. Among these by-products, the gasification fly ash (GFA) is the only hazardous solid residue to be landfilled. To explore its potential recycling methods and maximize its recycling efficiency, the detailed physicochemical properties of GFA are crucial. This study conducted a comprehensive characterization of six GFA samples and the results were compared with one incineration fly ash (IFA) sample and available data of IFA collected in Singapore in literature. X-ray fluorescence (XRF), and microwave acid digestion (MAD) followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS) were carried out to determine the physicochemical composition of ashes. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were applied to identify their mineralogical composition. The hazard of the material was assessed through one-stage batch leaching tests. The results showed that the GFAs and IFA were both mainly composed of calcium compounds and chloride salts. However, GFA contained higher amounts of heavy metals especially lead (Pb) and zinc (Zn) than IFA. Zn contents in tested GFA samples were in a range of 1.4-3.0%, indicating the potential to recover Zn. The Ca(OH)2 content in GFA samples was up to 24.1%, which could be recovered as a low-grade lime. Based on the characteristics of GFA, a reusing method combining civil engineering utilization and resource recovery was suggested.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono/análise , Cinza de Carvão/química , Incineração , Metais Pesados/análise , Material Particulado/análise , Reciclagem , Singapura , Resíduos Sólidos/análise , Zinco/análise
6.
Chemosphere ; 303(Pt 1): 135011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35609664

RESUMO

Each year, extensive dredged clay slurries containing heavy metals need to be treated before being reused; in such contaminated slurries, lead (Pb) is frequently identified. Quicklime (CaO)-activated ground granulated blast-furnace slag (GGBS), magnesium (MgO)-activated GGBS, and ordinary Portland cement (OPC) are usually used to remediate the lead (Pb)-contaminated soil; nevertheless, using these curing agents (or binders), particularly CaO-GGBS and MgO-GGBS, to treat Pb-contaminated slurry with high water content is rarely reported. Moreover, inconsistent results were obtained from previous studies in terms of the mechanical and leaching performance of Pb-contaminated soils with the three binders. Based on the above-mentioned reasons, this study used CaO-GGBS, MgO-GGBS, and OPC to treat the Pb-contaminated clay slurry, and compared the effectiveness of the three binders in improving the mechanical and leaching properties of the slurry. Laboratory tests were performed to examine the leaching, strength, mineralogical, and micro-structural performance of treated clay slurries. The results showed that GGBS-based binders were more effective than OPC in improving the strength and Pb leachability of contaminated slurries. When suitable ratios between activators (CaO and MgO) and GGBS were used, a similar or even higher UCS was produced by CaO-GGBS than MgO-GGBS. Similar leachate pH and Pb leachability could be achieved between CaO-GGBS- and MgO-GGBS-treated contaminated clay slurries. Therefore, it is not rigorous to state that MgO-GGBS is better in improving the strength and leachability of Pb-contaminated soils than CaO-GGBS only by comparing the two GGBS-binders based on the same activator/GGBS ratio, as reported in some previous studies. The leachability of Pb was affected by the pH, but the addition of GGBS facilitated the decrease of Pb leachability in slurries. The XRD result showed the formation of CSH and Pb(OH)2, which facilitated the reduction of Pb leachability.


Assuntos
Poluentes do Solo , Argila , Chumbo , Óxido de Magnésio/química , Solo/química , Poluentes do Solo/análise
7.
Environ Pollut ; 299: 118906, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091018

RESUMO

In recent years, slagging-gasification technology has received increasing attention in treating municipal solid waste (MSW). Compared with conventional incineration, the higher temperature in the slagging-gasification process optimizes its residue composition, and gasification fly ash (GFA) is the only unreused solid residue. Although GFA is a potential civil engineering material, its high content of heavy metals, chlorides, and sulfates hinders its practical use. Moreover, although carbonation has proven to immobilize heavy metals in incineration fly ash, the conventional gas carbonation method cannot remove chlorides and sulfates. In this study, sodium bicarbonate (NaHCO3) treatment was studied to treat GFA for the first time, and sodium carbonate (Na2CO3) was used for comparison. Different concentrations of NaHCO3 and Na2CO3 solutions were used to treat the GFA, and comprehensive tests were conducted on the treated samples. The results indicated that NaHCO3 treatment was effective in immobilizing Pb, Zn, Cu, and Ni in GFA, while Na2CO3 treatment could not effectively immobilize Pb and Zn. Both NaHCO3 and Na2CO3 promoted the removal of chlorides and sulfates in GFA. The wastewater from the NaHCO3 treatment contained fewer heavy metals compared with those from water washing or Na2CO3 treatment, benefitting its treatment or reuse.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono/química , Carbonatos , Cinza de Carvão/química , Incineração , Metais Pesados/análise , Material Particulado/química , Eliminação de Resíduos/métodos , Bicarbonato de Sódio , Resíduos Sólidos/análise
8.
Chemosphere ; 287(Pt 3): 132274, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562709

RESUMO

Ladle furnace slag (LFS) is a by-product of the steel industry and is difficult to be reused due to its weak cementitious property, low strength, and potential leaching of heavy metals. The emission of carbon dioxide (CO2) is also a concern for the steel industry. Therefore, the aim of this study was to use CO2 to immobilize heavy metals in LFS and enhance its strength. The LFS specimens were carbonated with different initial water contents, CO2 pressures, and carbonation periods. The carbonated LFS were then studied by leaching test, unconfined compressive strength (UCS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX). The results showed that LFS had carbonation reactivity and could sequester CO2 up to 9.6% of its own mass. The carbonation also effectively reduced the leaching of heavy metals from LFS, especially Pb and Zn. The concentrations of leached Pb and Zn of carbonated LFS were significantly reduced from 2760 and 1460 µg/L to 0.11 and 0.56 µg/L, respectively, being one order of magnitude (Pb) or three orders of magnitude (Zn) lower than limits of inert waste and three drinking water regulations. The strength of the carbonated LFS also remarkably increased and was two orders of magnitude higher than that of the uncarbonated LFS. Following the carbonation, calcium carbonate, nesquehonite, and hydromagnesite were produced; these carbonates filled pores and bound LFS particles, which enhanced the strength of LFS.


Assuntos
Dióxido de Carbono , Metais Pesados , Sequestro de Carbono , Carbonatos , Resíduos Industriais/análise , Aço
9.
Chemosphere ; 286(Pt 3): 131860, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34391116

RESUMO

Stabilization/solidification (S/S) is a low-cost and effective remedial technique for dredged contaminated sediments. Quick lime (CaO)-activated and reactive magnesia (MgO)-activated ground granulated blast furnace slag (GGBS) are effective and low-carbon S/S binders. However, the existence of metals, especially Zn, in contaminated sediments, may hinder the hydration of GGBS. This study compared the performance and mechanisms of CaO-GGBS, MgO-GGBS and ordinary Portland cement (OPC) for the treatment of Zn-contaminated clay slurry using unconfined compressive strength (UCS) test, one-stage batch leaching test, and mineralogical and thermal analyses. The results showed that the application of the MgO-GGBS (GGBS dosage of 10 % and MgO of 0 %-3 % (of dry clay by mass)) had positive effects on the mechanical strength and Zn immobilization of the contaminated clay slurry while the CaO-GGBS affected negatively and the situation became even worse at a higher CaO dosage (0 %-1.5 % of dry clay by mass). In comparison with OPC, the application of MgO-GGBS produced higher mechanical strength and that for CaO-GGBS was the lowest. The Zn leaching difference depends on initial Zn concentrations. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) results showed that a retarder, calcium zinc hydroxide, formed in the immobilization process when adding the CaO-GGBS binder, hindering the GGBS hydration and further leading to inferior strength and higher Zn leachability. The clay slurry treated by the MgO-GGBS binder was found to have a higher calcium silicate hydrate content which explained its high strength and low leachability.


Assuntos
Poluentes do Solo , Argila , Óxido de Magnésio , Solo , Poluentes do Solo/análise , Zinco
10.
Chemosphere ; 290: 133298, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34922973

RESUMO

Freshwater sludge (FS) produced from drinking water treatment plants is generally filter pressed and disposed in the landfill. However, FS could be potentially reused. In this study, FS were processed into biochar and hydrochar via pyrolysis and hydrothermal carbonization, respectively. The sorption characteristics/mechanisms of FS and its derivatives (biochar-B300, B500 and B700 and hydrochar-H140, H160, H180 and H200) for the removal of three typical pollutants (i.e., lead (Pb), phosphorus (P) and enrofloxacin (ENR)) found in swine wastewater were investigated using batch adsorption tests and microstructural analyses. It was found that Pb sorption was relatively enhanced due to the increased electrostatic attraction and surface precipitation of Pb(OH)2 while the anionic phosphate adsorption relatively decreased as a result of enhanced electrostatic repulsion at higher solution pHs. Comparatively, ENR adsorption was less affected by solution pH probably due to dominance of physical adsorption evidenced by the good fitting of the BET isotherm model (R2 = 0.95). The maximum sorption capacities of Pb were in the order of B700≈B500 (71 mg/g)>B300 ~ FS(37 mg/g)>H140 ~ H160 (13 mg/g)>H180 ~ H200 (6 mg/g). The adsorption capacities for P were relatively lower: FS (47 mg/g)>B300 (38 mg/g)>H140 (27 mg/g)>B700 (37 mg/g)≈B500 (24 mg/g)≈H160 (23 mg/g)>H180 (16 mg/g)>H200 (14 mg/g). This study provides an understanding of the sorption characteristics and mechanisms of FS and its carbonaceous products for common cationic, anionic and organic pollutants and elucidates new insights into the reuse of FS for pollutant removal to achieve the waste-to-resource concept and enhance water quality, soil health and food safety.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Animais , Antibacterianos , Carvão Vegetal , Enrofloxacina , Água Doce , Cinética , Chumbo , Fósforo , Suínos
11.
Sci Total Environ ; 763: 144550, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373787

RESUMO

Freshwater sludge (FS) is generated in large quantities during the production of drinking water every day. It is largely underutilized, and has long been filter pressed to sludge cake and then disposed of in landfills. The search for more economical and sustainable disposal or reuse options is urgently needed. Biochar and hydrochar are increasingly popular wastes derived materials with huge potential for soil improvement, environmental remediation, and mitigation of climate change, but there is a lack of research on the production of FS derived biochar and hydrochar. In this study, biochar was produced by pyrolysis at 300, 500 or 700 °C for 1 h, and hydrochar was produced by hydrothermal carbonization (HTC) at 140, 160, 180 or 200 °C for 4 h. Proximate analyses show that the biochar has a higher carbon stability and is possibly suitable for carbon sequestration, while the hydrochar contains more labile carbon structures. The ultimate analysis indicates that the surface hydrophobicity is in the order of: biochar > hydrochar > FS. The phytotoxicity tests indicate their positive effects on germination of wheat seeds. This study provides a new treatment to reuse numerous FS and put forward the possible applications of its carbonaceous products, which is expected to facilitate a circular economy and realize the zero-waste target.


Assuntos
Carvão Vegetal , Esgotos , Carbono , Água Doce , Temperatura
12.
Chemosphere ; 263: 128311, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297247

RESUMO

Ordinary Portland cement (OPC) and lime are commonly used to treat soils contaminated by heavy metals, such as cadmium (Cd) and manganese (Mn). However, the production of these two binders is not sustainable, consuming high energy and emitting high carbon dioxide (CO2). In this contest, this study proposed a novel and sustainable method of carbonating magnesia (MgO) for treatment of Cd- and Mn-contaminated soils, which can sequester CO2 and immobilize Cd and Mn in the soils. To validate the method, a range of experiments were performed. First, MgO and CO2 were used to treat contaminated soils. Then, the properties of the treated soils were evaluated by unconfined compressive strength test, one stage batch leaching test, X-ray diffraction test, and thermogravimetric analysis. It was found that the carbonation process of MgO-treated soils was decelerated by Mn, but not significantly decelerated by Cd. After carbonation, multiple magnesium carbonates were formed in both contaminated soils, and CdCO3 was formed in the Cd-contaminated soil, while MnCO3 was not confidently determined in the Mn-contaminated soil. Both Cd and Mn negatively affected the strength of carbonated MgO-treated soils; nevertheless, if the concentration of Cd or Mn was not more than 8000 mg/kg, 5% MgO-treated soils after carbonation could meet the strength requirement of higher than 1000 kPa. The treatment decreased the Cd leachability to be below the limit for non-hazardous wastes. The leached concentration of Mn was decreased to be lower than the limit of drinking water.


Assuntos
Cádmio , Poluentes do Solo , Carbonatos , Óxido de Magnésio , Manganês , Solo , Poluentes do Solo/análise
13.
Waste Manag ; 120: 183-192, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310130

RESUMO

This study systematically investigated the acid washing of incineration bottom ash (IBA) of municipal solid waste, focusing on the removal and leaching of heavy metals (Pb, Zn, Cr, Cd, Cu, and Ni), as well as their pH-dependent behavior. A series of small-scale laboratory acid washing tests with different nitric acid concentrations and washing periods were conducted. The concentrations of metals in the washing water were measured to evaluate the metal removal efficiency. Then, one stage batch leaching test was conducted for washed IBA to evaluate the leaching reduction efficiency of washing. The results showed that the maximum metal removal efficiencies for Zn, Cu, and Ni (62-76%) were higher than those for Pb, Cr, and Cd (17-25%), which were reached at the highest acid addition for most of the metals. Increasing the washing period did not always increase the metal removal efficiency. The maximum leaching reduction efficiencies were higher for Zn, Cr, and Cu (93-98%) than those for Pb, Ni, and Cd (73-79%). Both washing and leaching processes showed a similar metal concentration-pH profile for each metal. For Pb, Zn, Cr, and Cd, the metal concentration-pH profile generally followed the metal hydroxide solubility versus pH curves. For Cu and Ni, the concentration of metal decreased with the increasing pH first and then kept at a stable concentration higher than the solubility of the hydroxide, indicating that Cu and Ni in the IBA washing water and leachates did not exist dominantly as their hydroxides.


Assuntos
Incineração , Metais Pesados , Cinza de Carvão , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Resíduos Sólidos/análise
14.
Waste Manag ; 104: 213-219, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982784

RESUMO

Incineration bottom ash (IBA) of municipal solid waste is a potential construction material for civil engineering. However, the possible leaching of trace heavy metals from IBA is a concern. Water washing is a simple and economic method to remove heavy metals from IBA. In order to optimize the water washing process of IBA, this study investigated the pH evolution during washing and its effect on the removal of several heavy metals, including lead (Pb), zinc (Zn), nickel (Ni), cadmium (Cd), copper (Cu), and chromium (Cr), through a small-scale laboratory experiment. The results show that the pH of washing water increases quickly in the first 1-3 h mainly due to the dissolution of quicklime and portlandite, and then decreases with the increasing of washing time might be due to consumption of OH- by precipitation of metal hydroxides. The concentrations of Pb, Zn, and Ni in the washing water show a similar trend as that of the pH with time, whilst the concentrations of Cd, Cu, and Cr increase with the increase of washing time. Hence, the optimum washing time should be determined accordingly based on the most concerned metal(s), as well as the pH evaluation during washing.


Assuntos
Incineração , Metais Pesados , Cinza de Carvão , Concentração de Íons de Hidrogênio , Água
15.
Sci Total Environ ; 705: 135854, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972921

RESUMO

The disposal of ladle furnace slag (ladle slag, LS) containing traces of heavy metals produced during steelmaking has become an environmental issue. The use of LS as a binding material in civil engineering is a potential solution. In this context, this study firstly attempted to activate LS with sodium hydroxide (NaOH), sodium sulfate (Na2SO4), and sodium metasilicate (Na2SiO3), and then blended it with ground granulated blast-furnace slag (GGBS) with different LS:GGBS ratios. The chemical-activated LS pastes and LS-GGBS pastes were cured for different ages, and then subjected to a compressive strength test. The results indicated NaOH, Na2SO4, and Na2SiO3 could not effectively activate this LS, with 28-day strength <2 MPa, whilst the LS-GGBS yielded much higher strength, up to 15.6 MPa at 28 days. Only a very low concentration of Pb leached out from the LS-GGBS at 14 days, and none of the possible heavy metals were detected at 56 days. This indicates that LS-GGBS can be potentially used as a binding material in civil engineering. The X-ray diffraction (XRD) revealed that the Ca(OH)2 in LS acted as the main activator for GGBS hydration; the MgO and CaCO3 in LS seemed to play similar roles as that of the Ca(OH)2. The XRD, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX) indicated that the main hydration product of LS-GGBS was calcium silicate hydrates (CSH).

16.
Sci Total Environ ; 671: 741-753, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30939327

RESUMO

Stabilization/solidification (S/S) is commonly applied to treat heavy metal-contaminated soils through the use of lime and ordinary Portland cement (OPC). Recently, reactive magnesia (MgO) has emerged as a novel binder for S/S of heavy metal-contaminated soils; however, a comprehensive comparison between MgO, lime (CaO), and OPC for S/S application is still missing. This study compares the S/S efficiency of MgO, CaO, and OPC for soils contaminated by six individual heavy metals (Pb, Cu, Zn, Ni, Cd, and Mn) through unconfined compressive strength (UCS) test, one stage batch leaching test, and microstructural analysis. The addition of binders can transform soluble heavy metal salts to insoluble hydroxides and their complexes, and hence the leachability of heavy metals decreases. However, the level, to which the leachability can be reduced, is highly pH dependent. Contaminated soils treated with MgO have pH of 9-10.5, at which the leachability of Pb and Zn is much lower than that of OPC- or CaO-treated soils with pH of 10.5-13; for example, the leached Pb and Zn from MgO-treated soils are only 0.1%-3.3% and 0.1%-9.4% of those from OPC-treated soils, respectively. On the other hand, the leached Cd and Mn from OPC-treated soils are 0.1%-28.5% and 0.1-10.7% of those from MgO-treated soils, respectively, due to the high pH and the formation of calcium silicate hydrate (CSH) in OPC-treated soils. OPC and CaO are more effective than MgO in decreasing the Ni leachability at high original concentrations, but less effective at low original concentrations. For all soils except those contaminated by Zn, the OPC generally produces a much higher UCS, up to two orders of magnitude, than the CaO and MgO. The results of study indicate that no single binder can treat all types of heavy metal-contaminated soils perfectly, and the selection of binder is a site-specific problem.

17.
J Environ Sci (China) ; 24(9): 1630-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23520871

RESUMO

Portland cement has been widely used for stabilisation/solidification (S/S) treatment of contaminated soils. However, there is a dearth of literature on pH-dependent leaching of contaminants from cement-treated soils. This study investigates the leachability of Cu, Pb, Ni, Zn and total petroleum hydrocarbons (TPH) from a mixed contaminated soil. A sandy soil was spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, and treated with ordinary Portland cement (CEM I). Four different binder dosages, 5%, 10%, 15% and 20% (m/m) and different water contents ranging from 13%-19% dry weight were used in order to find a safe operating envelope for the treatment process. The pH-dependent leaching behaviour of the treated soil was monitored over an 84-day period using a 3-point acid neutralisation capacity (ANC) test. The monolithic leaching test was also conducted. Geotechnical properties such as unconfined compressive strength (UCS), hydraulic conductivity and porosity were assessed over time. The treated soils recorded lower leachate concentrations of Ni and Zn compared to the untreated soil at the same pH depending on binder dosage. The binder had problems with Pb stabilisation and TPH leachability was independent of pH and binder dosage. The hydraulic conductivity of the mixes was generally of the order, 10(-8) m/sec, while the porosity ranged from 26%-44%. The results of selected performance properties are compared with regulatory limits and the range of operating variables that lead to acceptable performance described.


Assuntos
Poluentes do Solo/química , Solo/química , Conservação dos Recursos Naturais/métodos , Materiais de Construção , Concentração de Íons de Hidrogênio , Fatores de Tempo
18.
Environ Sci Pollut Res Int ; 18(8): 1286-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21409547

RESUMO

PURPOSE: Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. METHODS: In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. RESULTS: The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. CONCLUSIONS: The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.


Assuntos
Compostos de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Hidrocarbonetos/química , Metais Pesados/química , Óxidos/química , Poluentes do Solo/química , Solo/química , Hidrocarbonetos/análise , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Petróleo , Poluentes do Solo/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...