Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 52(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830154

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1408, the microscopic images shown for the light scope images (upper row) and the green fluorescence images (lower row) appeared to be overlapping, such that these images appeared to have been derived from the same original sources even though they were intended to portray the results from differently performed experiments. After having re­examined their figures, the authors realized that this figure was assembled incorrectly. The revised version of Fig. 2, showing the correct data for all four experimental panels, is shown below. Note that the errors made during the assembly of these figures did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 37: 1405­1411, 2016; DOI: 10.3892/ijmm.2016.2539].

2.
Oncol Lett ; 15(6): 10070-10076, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29928376

RESUMO

Multidrug resistance (MDR) in leukemia cells is a major obstacle to chemotherapeutic treatment. High expression and constitutive activation of multidrug resistance protein 1 (MRP1) has been associated with the development of resistance to anticancer drugs in a number of tumor types. The activity of c-Jun N-terminal kinase 1 (JNK1) is associated with the occurrence of MDR and MRP1 expression. The present study aimed to investigate the ability of solanine to resensitize the Adriamycin® (ADR)-resistant human myelogenous leukemia cell line K562/ADM to ADR. Results of the Cell Counting Kit-8 assay demonstrated that solanine inhibited K562/ADM cell proliferation. K562/ADM cell sensitivity to ADR was increased following treatment with solanine, indicated by increased intracellular accumulation of ADR. Western blotting demonstrated that treatment with solanine led to reduced MRP1 protein expression, suggesting that solanine-induced ADR accumulation is due to the downregulation of MRP1 expression. Solanine-mediated MRP1 downregulation was observed to be dependent on the JNK signaling pathway. In conclusion, the results of the present study suggest that solanine reverses MDR in K562/ADM cells and may represent a novel therapeutic agent for the treatment of human myelogenous leukemia.

3.
Oncol Lett ; 15(5): 7383-7388, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29731890

RESUMO

Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn. It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.

4.
Oncol Rep ; 37(5): 2735-2742, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28358418

RESUMO

Chemotherapy is the main treatment method for patients with chronic myeloid leukemia (CML) and has achieved marked results. However, the acquisition of multidrug resistance (MDR) has seriously affected the quality of life and survival rate of patients. The overexpression of the inhibitors of apoptosis proteins (IAPs) and the adenosine triphosphate (ATP)-dependent binding cassette (ABC) transporters are the two main causes of MDR. Apollon and MDR1 are the most important and representative members, respectively, among the IAPs and ABC transporters. In the present study, we investigated the role of Apollon and MDR1 in chemotherapy resistance and their mechanism of interaction. We respectively knocked down the expression of Apollon and MDR1 using short hairpin RNA (shRNA) in adriamycin (ADM) resistant human CML K562 cells and examined the drug sensitivity, the consequences with regard to ADM accumulation and the alterations in the expression of Apollon and MDR1. The expression levels of Apollon and MDR1 mRNA were higher in the K562/ADM cells compared with the parental K562 cells as determined by reverse transcription­polymerase chain reaction (RT-PCR). The plasmids of Apollon and MDR1 shRNA were respectively stably transfected into K562/ADM cells using Lipofectamine 2000. The transfection efficiency was detected by fluorescence microscopy. Cell Counting Kit-8 (CCK-8) assay revealed that Apollon or MDR1 knockdown significantly increased the chemosensitivity of the K562/ADM cells to ADM. Flow cytometric assay revealed that K562/ADM/shMDR1 cells exhibited a significantly increased intracellular accumulation of ADM, and that changes were not found in the K562/ADM/shApollon cells. Compared with the parental K562/ADM cells, a significantly decreased expression of Apollon mRNA and protein was determined in the K562/ADM/shApollon cells without affecting the expression of MDR1 as determined by RT-PCR and western blotting. Likewise, the expression levels of MDR1 mRNA and protein also markedly downregulated in the K562/ADM/shMDR1 cells had no effect on Apollon expression. Collectively, our findings demonstrated, for the first time, that downregulation of Apollon or MDR1 through stable transfection with the Apollon- or MDR1-targeting shRNA induced MDR reversal through respective inhibition of Apollon or MDR1 expression and function. However, the reversal mechanism of Apollon and MDR1 revealed no direct interaction with each other.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Inibidoras de Apoptose/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Humanos , Células K562 , RNA Interferente Pequeno
5.
Int J Oncol ; 49(6): 2529-2537, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27779650

RESUMO

Multidrug resistance (MDR) plays a pivotal role in human chronic myelogenous leukemia (CML) chemotherapy failure. MDR is mainly associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) proteins. Phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with multidrug resistance 1 (MDR1)/P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) expression in many human malignancies. Homeobox (HOX) B4, a member of the HOX gene family, has been reported to be correlated with occurrence, development, poor prognosis and drug resistance of human leukemia. In the present study, HOXB4 expression was analyzed in K562 cell line and its MDR subline K562/ADM. Compared with K562 cells, drug-resistant K562/ADM cells demonstrated evidently higher HOXB4 expression. In addition, we firstly investigated the reversal effect of HOXB4 deletion on K562/ADM cells and the underlying mechanism. The Cell Counting kit-8 (CCK-8) and flow cytometry assays showed that knockdown of HOXB4 enhanced chemosensitivity and decreased drug efflux in K562/ADM cells. Moreover, HOXB4 knockout led to downregulation of P-gp, MRP1 and BCRP expression and PI3K/Akt signaling activity, suggesting that repression of HOXB4 might be a key point to reverse MDR of K562/ADM cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Homeodomínio/genética , Leucemia Mieloide/tratamento farmacológico , Fatores de Transcrição/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Citarabina/farmacologia , Doxorrubicina/farmacologia , Etoposídeo/farmacologia , Humanos , Leucemia Mieloide/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vindesina/farmacologia
6.
Int J Mol Med ; 37(5): 1405-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035504

RESUMO

Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Proteínas Homeobox A10 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
7.
Int J Oncol ; 48(5): 2063-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26984633

RESUMO

One of the major causes of failure in chemotherapy for patients with human chronic myelogenous leukemia (CML) is the acquisition of multidrug resistance (MDR). MDR is often associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) protein family. Timosaponin A-III (TAIII), a saponin isolated from the rhizome of Anemarrhena asphodeloides, has previously demonstrated the ability to suppress certain human tumor processes and the potential to be developed as an anticancer agent. Nevertheless, the ability of TAIII to reverse MDR has not yet been explored. In this study, the adriamycin (ADM) resistance reversal effect of TAIII in human CML K562/ADM cells and the underlying mechanism was investigated. The Cell Counting Kit-8 (CCK-8) assay showed that TAIII had a reversal effect on the drug resistance of K562/ADM cells. Flow cytometry assay showed increased intracellular accumulation of ADM after cells were pretreated with TAIII, and the changes in the accumulation of rhodamine-123 (Rho-123) and 5(6)-carboxyfluorescein diacetate (CFDA) dye in K562/ADM cells were determined to be similar to the changes of intracellular accumulation of ADM. After pretreatment of cells with TAIII, the decreasing expression of P-gp and MRP1 mRNA was examined by reverse transcription polymerase chain reaction (RT-PCR). Western blotting showed TAIII inhibiting P-gp and MRP1 expression depended on the PI3K/Akt signaling pathway by decreasing the activity of p-Akt. Moreover, wortmannin an inhibitor of PI3K/Akt signaling pathway has a strong inhibitory effect on the expression of p-Akt, P-gp and MRP1. Besides, the combined treatment with TAIII did not have an affect on wortmannin downregulation of p-Akt, P-gp and MRP1. Taken together, our findings demonstrate, for the first time, that TAIII induced MDR reversal through inhibition of P-gp and MRP1 expression and function with regained adriamycin sensitivity which might mainly correlate to the regulation of PI3K/Akt signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Saponinas/farmacologia , Esteroides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...