Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9302, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291251

RESUMO

To investigate whether the combination scheme of deep learning score (DL-score) and radiomics can improve preoperative diagnosis in the presence of micropapillary/solid (MPP/SOL) patterns in lung adenocarcinoma (ADC). A retrospective cohort of 514 confirmed pathologically lung ADC in 512 patients after surgery was enrolled. The clinicoradiographic model (model 1) and radiomics model (model 2) were developed with logistic regression. The deep learning model (model 3) was constructed based on the deep learning score (DL-score). The combine model (model 4) was based on DL-score and R-score and clinicoradiographic variables. The performance of these models was evaluated with area under the receiver operating characteristic curve (AUC) and compared using DeLong's test internally and externally. The prediction nomogram was plotted, and clinical utility depicted with decision curve. The performance of model 1, model 2, model 3 and model 4 was supported by AUCs of 0.848, 0.896, 0.906, 0.921 in the Internal validation set, that of 0.700, 0.801, 0.730, 0.827 in external validation set, respectively. These models existed statistical significance in internal validation (model 4 vs model 3, P = 0.016; model 4 vs model 1, P = 0.009, respectively) and external validation (model 4 vs model 2, P = 0.036; model 4 vs model 3, P = 0.047; model 4 vs model 1, P = 0.016, respectively). The decision curve analysis (DCA) demonstrated that model 4 predicting the lung ADC with MPP/SOL structure would be more beneficial than the model 1and model 3 but comparable with the model 2. The combined model can improve preoperative diagnosis in the presence of MPP/SOL pattern in lung ADC in clinical practice.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Área Sob a Curva , Nomogramas , Neoplasias Pulmonares/diagnóstico por imagem
2.
Br J Cancer ; 128(6): 1019-1029, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599915

RESUMO

BACKGROUND: This study aims to develop and validate an artificial intelligence (AI)-aided Prostate Imaging Reporting and Data System (PI-RADSAI) for prostate cancer (PCa) diagnosis based on MRI. METHODS: The deidentified MRI data of 1540 biopsy-naïve patients were collected from four centres. PI-RADSAI is a two-stage, human-in-the-loop AI capable of emulating the diagnostic acumen of subspecialists for PCa on MRI. The first stage uses a UNet-Seg model to detect and segment biopsy-candidate prostate lesions, whereas the second stage leverages UNet-Seg segmentation is trained specifically with subspecialist' knowledge-guided 3D-Resnet to achieve an automatic AI-aided diagnosis for PCa. RESULTS: In the independent test set, UNet-Seg identified 87.2% (628/720) of target lesions, with a Dice score of 44.9% (range, 22.8-60.2%) in segmenting lesion contours. In the ablation experiment, the model trained with the data from three centres was superior (kappa coefficient, 0.716 vs. 0.531) to that trained with single-centre data. In the internal and external tests, the triple-centre PI-RADSAI model achieved an overall agreement of 58.4% (188/322) and 60.1% (92/153) with a referential subspecialist in scoring target lesions; when one-point margin of error was permissible, the agreement rose to 91.3% (294/322) and 97.3% (149/153), respectively. In the paired test, PI-RADSAI outperformed 5/11 (45.5%) and matched the performance of 3/11 (27.3%) general radiologists in achieving a clinically significant PCa diagnosis (area under the curve, internal test, 0.801 vs. 0.770, p < 0.01; external test, 0.833 vs. 0.867, p = 0.309). CONCLUSIONS: Our closed-loop PI-RADSAI outperforms or matches the performance of more than 70% of general readers in the MRI assessment of PCa. This system might provide an alternative to radiologists and offer diagnostic benefits to clinical practice, especially where subspecialist expertise is unavailable.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Inteligência Artificial , Biópsia , Estudos Retrospectivos , Biópsia Guiada por Imagem/métodos
3.
Eur Radiol ; 32(12): 8659-8669, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35748898

RESUMO

OBJECTIVE: To develop and evaluate a radiomics signature based on magnetic resonance imaging (MRI) from multicenter datasets for identification of invisible basal cisterns changes in tuberculous meningitis (TBM) patients. METHODS: Our retrospective study enrolled 184 TBM patients and 187 non-TBM controls from 3 Chinese hospitals (training dataset, 158 TBM patients and 159 non-TBM controls; testing dataset, 26 TBM patients and 28 non-TBM controls). nnU-Net was used to segment basal cisterns in fluid-attenuated inversion recovery (FLAIR) images. Subsequently, radiomics features were extracted from segmented basal cisterns in FLAIR and T2-weighted (T2W) images. Feature selection was carried out in three steps. Support vector machine (SVM) and logistic regression (LR) classifiers were applied to construct the radiomics signature to directly identify basal cisterns changes in TBM patients. Finally, the diagnostic performance was evaluated by the receiver operating characteristic (ROC) curve analysis, calibration curve, and decision curve analysis (DCA). RESULTS: The segmentation model achieved the mean Dice coefficients of 0.920 and 0.727 in the training and testing datasets, respectively. The SVM model with 7 T2WI-based radiomics features achieved best discrimination capability for basal cisterns changes with an AUC of 0.796 (95% CI, 0.744-0.847) in the training dataset, and an AUC of 0.751 (95% CI, 0.617-0.886) with good calibration in the testing dataset. DCA confirmed its clinical usefulness. CONCLUSION: The T2WI-based radiomics signature combined with deep learning segmentation could provide a fully automatic, non-invasive tool to identify invisible changes of basal cisterns, which has the potential to assist in the diagnosis of TBM. KEY POINTS: • The T2WI-based radiomics signature was useful for identifying invisible basal cistern changes in TBM. • The nnU-Net model achieved acceptable results for the auto-segmentation of basal cisterns. • Combining radiomics and deep learning segmentation provided an automatic, non-invasive approach to assist in the diagnosis of TBM.


Assuntos
Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Curva ROC , Máquina de Vetores de Suporte
4.
Cancer Cell Int ; 21(1): 539, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663307

RESUMO

BACKGROUND: Cumulative CT radiation damage was positively correlated with increased tumor risks. Although it has recently been known that non-radiation MRI is alternative for pulmonary imaging. There is little known about the value of MRI T1-mapping in the diagnosis of pulmonary nodules. This article aimed to investigate the value of native T1-mapping-based radiomics features in differential diagnosis of pulmonary lesions. METHODS: 73 patients underwent 3 T-MRI examination in this prospective study. The 99 pulmonary lesions on native T1-mapping images were segmented twice by one radiologist at indicated time points utilizing the in-house semi-automated software, followed by extraction of radiomics features. The inter-class correlation coefficient (ICC) was used for analyzing intra-observer's agreement. Dimensionality reduction and feature selection were performed via univariate analysis, and least absolute shrinkage and selection operator (LASSO) analysis. Then, the binary logical regression (LR), support vector machine (SVM) and decision tree classifiers with the input of optimal features were selected for differentiating malignant from benign lesions. The receiver operative characteristics (ROC) curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated. Z-test was used to compare differences among AUCs. RESULTS: 107 features were obtained, of them, 19.5% (n = 21) had relatively good reliability (ICC ≥ 0.6). The remained 5 features (3 GLCM, 1 GLSZM and 1 shape features) by dimensionality reduction were useful. The AUC of LR was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70%, 85% and 80%. The AUC of SVM was 0.82(95%CI: 0.67-0.98), with sensitivity, specificity and accuracy of 70, 85 and 80%. The AUC of decision tree was 0.69(95%CI: 0.49-0.87), with sensitivity, specificity and accuracy of 50, 85 and 73.3%. CONCLUSIONS: The LR and SVM models using native T1-mapping-based radiomics features can differentiate pulmonary malignant from benign lesions, especially for uncertain nodules requiring long-term follow-ups.

5.
Eur Radiol ; 30(9): 4985-4994, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32337640

RESUMO

OBJECTIVE: To determine the diagnostic performance of a deep learning (DL) model in evaluating myometrial invasion (MI) depth on T2-weighted imaging (T2WI)-based endometrial cancer (EC) MR imaging (ECM). METHODS: We retrospectively enrolled 530 patients with pathologically proven EC at our institution between January 1, 2013, and December 31, 2017. All imaging data were reviewed on picture archiving and communication systems (PACS) server. Both sagittal and coronal T2WI-based MR images were used for lesion area determination. All MR images were divided into two groups: deep (more than 50%) and shallow (less than 50%) MI based on their pathological diagnosis. We trained a detection model based on YOLOv3 algorithm to locate the lesion area on ECM. Then, the detected regions were fed into a classification model based on DL network to identify MI depth automatically. RESULTS: In the testing dataset, the trained model detected lesion regions with an average precision rate of 77.14% and 86.67% in both sagittal and coronal images, respectively. The classification model yielded an accuracy of 84.78%, a sensitivity of 66.67%, a specificity of 87.50%, a positive predictive value of 44.44%, and a negative predictive value of 94.59% in determining deep MI. The radiologists and trained network model together yielded an accuracy of 86.2%, a sensitivity of 77.8%, a specificity of 87.5%, a positive predictive value of 48.3%, and a negative predictive value of 96.3%. CONCLUSION: In this study, the DL network model derived from MR imaging provided a competitive, time-efficient diagnostic performance in MI depth identification. KEY POINTS: • The models established with the deep learning method could help improve the diagnostic confidence and performance of MI identification based on endometrial cancer MR imaging. • The models enabled the classification of endometrial cancer MR images to the two categories with a sensitivity of 0.67, a specificity of 0.88, and an accuracy of 0.85. • Using the detected lesion region to evaluate myometrial invasion depth could remove redundant information in the image and provide more effective features.


Assuntos
Algoritmos , Aprendizado Profundo , Neoplasias do Endométrio/diagnóstico , Imageamento por Ressonância Magnética/métodos , Miométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...