Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharmaceutica Sinica B ; (6): 1351-1362, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929342

RESUMO

Scaffold hopping refers to computer-aided screening for active compounds with different structures against the same receptor to enrich privileged scaffolds, which is a topic of high interest in organic and medicinal chemistry. However, most approaches cannot efficiently predict the potency level of candidates after scaffold hopping. Herein, we identified potent PDE5 inhibitors with a novel scaffold via a free energy perturbation (FEP)-guided scaffold-hopping strategy, and FEP shows great advantages to precisely predict the theoretical binding potencies ΔG FEP between ligands and their target, which were more consistent with the experimental binding potencies ΔG EXP (the mean absolute deviations | Δ G FEP - Δ G EXP |  < 2 kcal/mol) than those ΔG MM-PBSA or ΔG MM-GBSA predicted by the MM-PBSA or MM-GBSA method. Lead L12 had an IC50 of 8.7 nmol/L and exhibited a different binding pattern in its crystal structure with PDE5 from the famous starting drug tadalafil. Our work provides the first report via the FEP-guided scaffold hopping strategy for potent inhibitor discovery with a novel scaffold, implying that it will have a variety of future applications in rational molecular design and drug discovery.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-114033

RESUMO

In all of the clinical trials for COVID-19 conducted thus far and among those ongoing involving chloroquine or hydroxychloroquine, the drug substance used has invariably been chloroquine (CQ) diphosphate or hydroxychloroquine (HCQ) sulfate, i.e., the phosphoric or sulfuric acid salt of a racemic mixture of R- and S-enantiomer (50/50), respectively. As a result, the clinical outcome from previous CQ or HCQ trials were, in fact, the collective manifestation of both R and S- enantiomers with inherent different pharmacodynamic and pharmacokinetic properties, and toxicity liabilities. Our data for the first time demonstrated the stereoselective difference of CQ and HCQ against live SARS-CoV-2 virus in a Biosafety Level 3 laboratory. S-chloroquine (S-CQ) and S-hydroxychloroquine (S-HCQ) significantly more active against SARS-CoV-2, as compared to R-CQ and R-HCQ, respectively. In addition, Mpro, as one of the critical enzymes for viral transcription and replication, also exhibited an enantioselective binding affinity toward the S-enantiomers. The most significant finding from this study is the pronounced difference of the two enantiomers of CQ and HCQ observed in hERG inhibition assay. The IC50 value of S-HCQ was higher than 20 M against hERG channel, which was much less active over all tested CQ and HCQ compounds. Moreover, S-HCQ alone did not prolong QT interval in guinea pigs after 3 days and 6 days of administration, indicating a much lower cardiac toxicity potential. With these and previous findings on the enantio-differentiated metabolism, we recommend that future clinical studies should employ S-HCQ, substantially free of the R-enantiomer, to potentially improve the therapeutic index for the treatment of COVID-19 over the racemic CQ and HCQ.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-004580

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and, thus, repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a new virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a new restraint energy distribution (RED) function designed to accelerate the FEP-ABFE calculations and make the practical FEP-ABFE-based virtual screening of the existing drug library possible for the first time. As a result, out of twenty-five drugs predicted, fifteen were confirmed as potent inhibitors of SARS-CoV-2 Mpro. The most potent one is dipyridamole (Ki=0.04 M) which has showed promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki=0.36 M) and chloroquine (Ki=0.56 M) were also found to potently inhibit SARS-CoV-2 Mpro for the first time. We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts. Significance StatementDrug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. It has been demonstrated that a new virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions can reach an unprecedently high hit rate, leading to successful identification of 16 potent inhibitors of SARS-CoV-2 main protease (Mpro) from computationally selected 25 drugs under a threshold of Ki = 4 M. The outcomes of this study are valuable for not only drug repurposing to treat COVID-19, but also demonstrating the promising potential of the FEP-ABFE prediction-based virtual screening approach.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20027557

RESUMO

The human coronavirus HCoV-19 infection can cause acute respiratory distress syndrome (ARDS), hypercoagulability, hypertension, extrapulmonary multiorgan dysfunction. Effective antiviral and anti-coagulation agents with safe clinical profiles are urgently needed to improve the overall prognosis. We screened an FDA approved drug library and found that an anticoagulant agent dipyridamole (DIP) suppressed HCoV-19 replication at an EC50 of 100 nM in vitro. It also elicited potent type I interferon responses and ameliorated lung pathology in a viral pneumonia model. In analysis of twelve HCoV-19 infected patients with prophylactic anti-coagulation therapy, we found that DIP supplementation was associated with significantly increased platelet and lymphocyte counts and decreased D-dimer levels in comparison to control patients. Two weeks after initiation of DIP treatment, 3 of the 6 severe cases (60%) and all 4 of the mild cases (100%) were discharged from the hospital. One critically ill patient with extremely high levels of D-dimer and lymphopenia at the time of receiving DIP passed away. All other patients were in clinical remission. In summary, HCoV-19 infected patients could potentially benefit from DIP adjunctive therapy by reducing viral replication, suppressing hypercoagulability and enhancing immune recovery. Larger scale clinical trials of DIP are needed to validate these therapeutic effects.

5.
Acta Pharmaceutica Sinica B ; (6): 1205-1215, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-828851

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) , which suppressed SARS-CoV-2 replication . In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers ( < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.

6.
Acta Pharmaceutica Sinica B ; (6): 2339-2347, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881115

RESUMO

Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...