Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844741

RESUMO

In this study, firstly, bis(thiosemicarbazone) ligand [L: 2,2'-(2-(2-(4-methoxyphenyl)hydrazineylidene)cyclohexane-1,3-diylidene)bis(hydrazine-1-carbothioamide)] was synthesized by the condensation reaction of thiosemicarbazide and ketone compound (2-(2-(4-methoxyphenyl)hydrazone)cyclohexane-1,3-dione). The metal complexes were synthesized by the reaction of obtained ligand (L) with CuCl2·2H2O, NiCl2·6H2O, CoCl2·6H2O, and MnCl2·4H2O salts. The structures of synthesized ligand and their complexes were characterized using elemental analysis, IR, UV-Vis, 1H-NMR spectra, 13C-NMR spectra, magnetic susceptibility, mass spectra (LC-MS), thermogravimetry analysis-differential thermal analysis (TGA-DTA), and differential scanning calorimetry techniques. According to the results of the analysis, square plane geometry was suggested for Cu and Co complexes. However, the structures of Ni and Mn complexes were in agreement with octahedral geometry. Molecular docking analysis and pharmacological potential of the compound were evaluated to determine the inhibitory potential against acetylcholinesterase (AChE) and Glutathione-S-transferases (GST) enzymes. The compound exhibited strong binding/docking indices of - 5.708 and - 5.928 kcal/mol for the respective receptors. In addition, L-Ni(II) complex was found to be the most effective inhibitor for AChE enzyme with a Ki value of 0.519. However, with a Ki value of 1.119, L-Cu(II) complex was also found to be an effective inhibitor for the GST enzyme.

2.
J Food Biochem ; 45(12): e13975, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676566

RESUMO

Daucus carota L. ssp. major (DCM) plant is widely used in traditional medicine to treat some types of cancer and various diseases. Therefore, we evaluated the biological activities of this plant to define its effects against prostate cancer (PCa), Alzheimer's disease (AD), oxidation, and diabetes mellitus (DM) as well as identified its phenolic composition. To determine the anti-cancer properties of the plant extract, we treated PCa cells with the extract at a concentration range of 0.25, 0.5, 1, 2, and 4 mg/ml. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. As a result of precise measurements at the millimolar level, it was observed that the plant extract showed an effective inhibition (IC50 ) against glutathione S-transferase (GST; 12.84 mM), acetyl cholinesterase (AChE; 15.07 mM), and α-Gly (11.75 mM) enzymes when compared with standard inhibitors. Antioxidant activities of DCM methanol extract were determined via two well-known in vitro techniques. The extracts showed antioxidant activities against the DPPH and ABTS+ . The LC-ESI-MS/MS was used to determine the phenolic compounds of methanol extract from DCM. Chlorogenic acid (2,089.096 µg/g), shikimic acid (193.14 µg/g), and coumarin (113.604 µg/g) were characterized as major phenolic compounds. In addition, the interactions of chlorogenic acid, chrysin, coumarin, and shikimic acid with the used three enzymes have been calculated using molecular docking simulation. PRACTICAL APPLICATIONS: Plant natural phenolic compounds have protective effects such as anti-inflammatory, antioxidant, anticarcinogen, and enzyme inhibitory. Therefore, it has an important place in the food and pharmaceutical industry. The present study aims to reveal the enzyme inhibitory, antioxidant, and anticarcinogenic properties of the Daucus carota ssp. Major (DCM) plant extract. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. DCM extract demonstrated considerable antioxidant activity and inhibitory potential on used metabolic enzymes. These biological effects are thought to have a relationship with rich chemical composition.


Assuntos
Acetilcolinesterase , Daucus carota , Glutationa Transferase , Glicosídeo Hidrolases , Humanos , Masculino , Simulação de Acoplamento Molecular , Células PC-3 , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Próstata , Espectrometria de Massas em Tandem
3.
Turk J Chem ; 44(6): 1574-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488254

RESUMO

The 4-(2-[3,4-dimethoxyphenoxy] phenoxy) phthalonitrile was synthesized as the starting material of new syntheses. Zinc, copper, and cobalt phthalocyanines were achieved by reaction of starting compound with Zn(CH3COO)2, CuCl2, and CoCl2 metal salts. Basic spectroscopic methods such as nuclear magnetic resonance electronic absorption, mass and infrared spectrometry were used in the structural characterization of the compounds. Absorption, excitation, and emission measurements of the fluorescence zinc phthalocyanine compound were also investigated in THF. Then, structural, energy, and electronic properties for synthesized metallophthalocyanines were determined by quantum chemical calculations, including the DFT method. The bandgap of HOMO and LUMO was determined to be chemically active. Global reactivity (I, A, η, s, µ, χ, ω) and nonlinear properties were studied. In addition, molecular electrostatic potential (MEP) maps were drawn to identify potential reactive regions of metallophthalocyanine (M-Pc) compounds. Photovoltaic performances of phthalocyanine compounds for dye sensitive solar cells were investigated. The solar conversion efficiency of DSSC based on copper, zinc, and cobalt phthalocyanine compounds was 1.69%, 1.35%, and 1.54%, respectively. The compounds have good solubility and show nonlinear optical properties. Zinc phthalocyanine gave fluorescence emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...