Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 473(2204): 20160936, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878553

RESUMO

The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s-1 to more than 1 km s-1, where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s-1, respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s-1) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.

2.
Chem Commun (Camb) ; 52(23): 4353-6, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26924607

RESUMO

We demonstrate the coexistence of Eu(2+) and Eu(3+) in corundum and bixbyite-type colloidal In2O3 nanocrystals. The emission properties of dopants in both oxidation states are determined by their interaction with native defects, and are dramatically different in the two nanocrystal phases. This difference arises from the smaller nanocrystal size and higher defect density in metastable corundum-type nanocrystals.


Assuntos
Európio/química , Índio/química , Nanopartículas , Luminescência , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...