Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(27): 11354-11367, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38919040

RESUMO

In this study, 2(3),9(10),16(17),23(24)-tetrakis-[(N-methyl-(1-benzylpiperidin-4-yl)oxy)phthalocyaninato]zinc(II) iodide (ZnPc-2) was synthesized and characterized using spectral methods (FT-IR, 1H-NMR, UV-Vis and mass spectroscopy). The interaction of ZnPc-2 with DNA was investigated by using the UV/Vis titrimetric method, thermal denaturation profile, agarose gel electrophoresis and molecular docking studies. Additionally, the antidiabetic activity of ZnPc-2 was revealed spectroscopically by studying α-amylase and α-glucosidase inhibition activities. The spectroscopic results indicated that ZnPc-2 effectively binds to calf thymus-DNA (CT-DNA) with a Kb value of 7.5 × 104 M-1 and interacts with CT-DNA via noncovalent binding mode. Gel electrophoresis results also show that ZnPc-2 binds strongly to DNA molecules and exhibits effective nuclease activity even at low concentrations. Furthermore, docking studies suggest that ZnPc-2 exhibits a stronger binding tendency with DNA than the control compounds ethidium bromide and cisplatin. Consequently, due to its strong DNA binding and nuclease activity, ZnPc-2 may be suitable for antimicrobial and anticancer applications after further toxicological tests. Additionally, antidiabetic studies showed that ZnPc-2 had both α-amylase and α-glucosidase inhibition activity. Moreover, the α-glucosidase inhibitory effect of ZnPc-2 was approximately 3500 times higher than that of the standard inhibitor, acarbose. Considering these results, it can be said that ZnPc-2 is a moderate α-amylase and a highly effective α-glucosidase inhibitor. This suggests that ZnPc-2 may have the potential to be used as a therapeutic agent for the treatment of type 2 diabetes.


Assuntos
DNA , Inibidores de Glicosídeo Hidrolases , Indóis , Isoindóis , Simulação de Acoplamento Molecular , alfa-Amilases , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , alfa-Glucosidases/metabolismo , DNA/metabolismo , DNA/química , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Água/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Compostos Organometálicos/síntese química , Solubilidade , Animais , Bovinos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Compostos de Zinco
2.
J Biomol Struct Dyn ; : 1-13, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327145

RESUMO

Interest in the use of bryophytes in pharmaceutical, cosmetic, and food industrial applications is growing worldwide due to their secondary metabolites. In this study, n-hexane crude extracts and further fractions (aqueous, ethyl acetate and n-butanol) of aqueous ethanol (80:20, ethanol:H2O, v/v) were obtained from five different bryophytes (Pellia epiphylla, Conocephalum conicum, Porella platyphylla, Plagiomnium cuspidatum and Mnium spinulosum) collected from Trabzon, Türkiye. The total phenolic compound (TPC) content, antioxidant capacity (AC) and enzyme inhibition activity (acetylcholine esterase, butyrylcholine esterase, tyrosinase, α-amylase and α-glucosidase) of the extracts and fractions were species-specific and varied significantly between the crude extracts and fractions. Among the different bryophytes, Porella platyphylla and Pellia epiphylla in n-butanol and Plagiomnium cuspidatum and Mnium spinulosum in ethyl acetate fraction exhibited the highest TPC contents and AC values. The contents of phenolic acids liberated in free, ester and glycoside forms were also species-specific. p-Hydroxybenzoic acid (p-HBA) in free form in P. cuspidatum and P. platyphylla, p-coumaric acid (p-CoA) in ester form and m-hydroxybenzoic acid (m-HBA) in glycoside form in M. spinulosum were the major phenolic acids in the bryophytes. The n-hexane extracts of the bryophytes, in particular M. spinulosum, had IC50 values ​​almost 100 times lower than acarbose. This suggests that M. spinulosum in particular may represent a possible candidate for the production of new antidiabetic agents.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...