Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(23): 19365-19379, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721991

RESUMO

This research aimed to analyze the spray characteristics of various biodiesels, which have rarely been investigated in terms of spray analysis in the literature compared to fossil diesel. For this purpose, four different methyl ester-type biodiesels were produced from canola, corn, cottonseed, and sunflower oils. These feedstocks were selected due to their wide availability in Turkey and being among the significant resources for biodiesel production. Measured physical properties of biodiesel samples showed that biodiesel fuels had, on average, 1.7 to 1.9 times higher viscosities, 5.3 to 6.6% larger densities, and 37 to 39.1% higher contact angle values than the reference diesel fuel. Spray characteristics of all fuels were experimentally examined in a constant volume spray chamber under chamber pressures of 0, 5, 10, and 15 bar and injection pressures of 600, 800, and 1000 bar. All tested biodiesels performed, on average, 3 to 20% longer spray penetration lengths, 5 to 30% narrower spray cone angles, and 5-18% lesser spray areas than the reference diesel fuel under chamber pressures of 5 and 10 bar. No significant differences occurred at 15 bar ambient pressure between biodiesels and diesel. In addition, analytical and empirical predictions showed that biodiesels had around 21.2-35.1% larger SMD values and approximately 7% lower air entrainment.

2.
Biomass Convers Biorefin ; : 1-18, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35233347

RESUMO

ABSTRACT: Biodiesels are mainly produced via the utilization of methanol in transesterification, which is the widespread biodiesel production process. The majority of this methanol is currently obtained from fossil resources, i.e. coal and natural gas. However, in contrast with methanol, biomass-based ethanol can also be used to produce biodiesels; this could allow the production line to become fully renewable. This study aimed to investigate the spray characteristics of various ethyl ester type biodiesels derived from sunflower and corn oils in comparison to methyl esters based on the same feedstocks and reference petroleum-based diesel. Spray penetration length (SPL) and spray cone angle (SCA) were experimentally evaluated in a constant volume chamber allowing optical access, under chamber pressures of 0, 5, 10 and 15 bar and injection pressures of 600 and 800 bar. Sauter mean diameter (SMD) values were estimated by using an analytical correlation. Consequently, ethyl esters performed longer SPL (2.8-20%) and narrower SCA (5.1-19%) than diesel under ambient pressures of 5 and 10 bar. Although the SMD values of ethyl esters were 48% higher than diesel on average, their macroscopic spray characteristics were very similar to those of diesel under 15 bar chamber pressure. Moreover, ethyl esters were found to be very similar to methyl esters in terms of spray characteristics. The differences in SPL, SCA and SMD values for both types of biodiesels were lower than 4%. When considering the uncertainty (± 0.84%) and repeatability (±5%) ratios, the difference between the spray characteristics of methyl and ethyl esters was not major.

3.
Materials (Basel) ; 15(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269018

RESUMO

In many countries, apple pomace (AP) is one of the most produced types of agri-food waste (globally, it is produced at a rate of ~4 million tons/year). If not managed properly, such bio-organic waste can cause serious pollution of the natural environment and public health hazards, mainly due to the risk of microbial contamination. This review shows that AP can be successfully reused in different industrial sectors-for example, as a source of energy and bio-materials-according to the idea of sustainable development. The recovered active compounds from AP can be applied as preservatives, antioxidants, anti-corrosion agents, wood protectors or biopolymers. Raw or processed forms of AP can also be considered as feedstocks for various bioenergy applications such as the production of intermediate bioenergy carriers (e.g., biogas and pyrolysis oil), and materials (e.g., biochar and activated carbon). In the future, AP and its active ingredients can be of great use due to their non-toxicity, biodegradability and biocompatibility. Given the increasing mass of produced AP, the commercial applications of AP could have a huge economic impact in the future.

4.
Bioresour Technol ; 207: 229-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26890798

RESUMO

Wild-type and two genetically engineered hybrid poplar lines were pyrolyzed in a micro-pyrolysis (Py-GC/MS) and a bench scale setup for fast and intermediate pyrolysis studies. Principal component analysis showed that the pyrolysis vapors obtained by micro-pyrolysis from wood of caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT) down-regulated poplar trees differed significantly from the pyrolysis vapors obtained from non-transgenic control trees. Both fast micro-pyrolysis and intermediate pyrolysis of transgenic hybrid poplars showed that down-regulation of COMT can enhance the relative yield of guaiacyl lignin-derived products, while the relative yield of syringyl lignin-derived products was up to a factor 3 lower. This study indicates that lignin engineering via genetic modifications of genes involved in the phenylpropanoid and monolignol biosynthetic pathways can help to steer the pyrolytic production of guaiacyl and syringyl lignin-derived phenolic compounds such as guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 4-vinylguaiacol, syringol, 4-vinylsyringol, and syringaldehyde present in the bio-oil.


Assuntos
Engenharia Genética/métodos , Hibridização Genética , Fenóis/metabolismo , Populus/genética , Populus/metabolismo , Temperatura , Vias Biossintéticas , Cromatografia Gasosa-Espectrometria de Massas , Lignina/metabolismo , Plantas Geneticamente Modificadas , Análise de Componente Principal
5.
J Chromatogr A ; 1257: 131-40, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22897863

RESUMO

Bio-oils produced by fast pyrolysis of lignocellulosic biomass have proven to be a promising, clean, and renewable energy source. To better assess the potential of using bio-oils for the production of chemicals and fuels a new comprehensive characterization method is developed. The combination of the analyical power of GC×GC-FID and GC×GC-TOF-MS allows to obtain an unseen level of detail for both crude and hydrotreated bio-oils originated from pine wood biomass. The use of GC×GC proves to be essential to capture the compositional differences between crude and stabilized bio-oils. Our method uses a flame ionization detector to quantify the composition, while GC×GC-TOF-MS is used for the qualitative analysis. This method allows quantification of around 150 tentatively identified compounds, describing approximately 80% of total peak volume. The number of quantified compounds in bio-oils is increased with a factor five compared to the present state-of-the-arte. The necessity of using multiple internal standards (dibutyl ether and fluoranthene) and a cold-on column injector is also verified.


Assuntos
Biocombustíveis/análise , Cromatografia Gasosa/métodos , Biomassa , Cromatografia de Fase Reversa , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/análise , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...