Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Med Sci ; 53(5): 1379-1386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38813013

RESUMO

Background/aim: We have designed an adjustable bone plate (ABP) which allows bone shortening and lengthening after fixation, which is a property not present in any of the plate systems available today. The aim of the current study was to examine the new ABP's segmental bone transfer capability for the treatment of a segmental bone defect in an animal model. Materials and methods: Five sheep had ABPs attached to 10 of their tibias and bone defects of 15 mm in size were created. The pinion mechanism was moved with a manual screwdriver at a rate of 1mm/day for 15 days starting 3 days postoperatively. The animals were euthanized 3 months postoperatively, and the defect site and the transferred segment were evaluated by radiological and histological examination. Results: The radiological results revealed successful transfers of 14.6 ± 1.2 mm of bone segment on all tibia defects without any complications. The histological evaluation showed new bone formation in both the extension and the docking sites. No rupture or breakage was observed within the plates. Conclusion: We have presented the potential of a new generation ABP for use in segmental bone transfer in an animal model as well as for future clinical applications.

2.
Biomater Adv ; 134: 112567, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35527139

RESUMO

Volumetric muscle loss (VML) due to trauma and tumor removal operations affects millions of people every year. Although skeletal muscle has a natural repair mechanism, it cannot provide self-healing above a critical level of VML. In this study, nanocomposite aligned fiber scaffolds as support materials were developed for volumetric skeletal muscle regeneration. For this purpose, silver nanowire (Ag NW) loaded poly(ε-caprolactone) (PCL) nanocomposite fiber scaffolds (PCL-Ag NW) were prepared to mimic the aligned electroactive structure of skeletal muscle and provide topographic and conductive environment to modulate cellular behavior and orientation. A computer-aided rotational wet spinning (RWS) system was designed to produce high-yield fiber scaffolds. Nanocomposite fiber bundles with lengths of 50 cm were fabricated via this computer-aided RWS system. The morphological, chemical, thermal properties and biodegradation profiles of PCL and PCL-Ag NW nanocomposite fibers were characterized in detail. The proliferation behavior and morphology of C2C12 mouse myoblasts were investigated on PCL and PCL-Ag NW nanocomposite fibrous scaffolds with and without electrical stimulation. Significantly enhanced cell proliferation was observed on PCL-Ag NW nanocomposite fibers compared to neat PCL fibers with electrical stimulations of 1.5 V, 3 V and without electrical stimulation.


Assuntos
Nanocompostos , Nanofios , Animais , Humanos , Camundongos , Músculo Esquelético , Nanocompostos/química , Poliésteres , Regeneração , Prata , Engenharia Tecidual , Alicerces Teciduais/química
3.
ACS Appl Mater Interfaces ; 14(1): 104-122, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958199

RESUMO

In orthopedic surgery, metals are preferred to support or treat damaged bones due to their high mechanical strength. However, the necessity for a second surgery for implant removal after healing creates problems. Therefore, biodegradable metals, especially magnesium (Mg), gained importance, although their extreme susceptibility to galvanic corrosion limits their applications. The focus of this study was to control the corrosion of Mg and enhance its biocompatibility. For this purpose, surfaces of magnesium-calcium (MgCa1) alloys were modified with calcium phosphate (CaP) or CaP doped with zinc (Zn) or gallium (Ga) via microarc oxidation. The effects of surface modifications on physical, chemical, and mechanical properties and corrosion resistance of the alloys were studied using surface profilometry, goniometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), nanoindentation, and electrochemical impedance spectroscopy (EIS). The coating thickness was about 5-8 µm, with grain sizes of 43.1 nm for CaP coating and 28.2 and 58.1 nm for Zn- and Ga-doped coatings, respectively. According to EIS measurements, the capacitive response (Yc) decreased from 11.29 to 8.72 and 0.15 Ω-1 cm-2 sn upon doping with Zn and Ga, respectively. The Ecorr value, which was -1933 mV for CaP-coated samples, was found significantly electropositive at -275 mV for Ga-doped ones. All samples were cytocompatible according to indirect tests. In vitro culture with Saos-2 cells led to changes in the surface compositions of the alloys. The numbers of cells attached to the Zn-doped (2.6 × 104 cells/cm2) and Ga-doped (6.3 × 104 cells/cm2) coatings were higher than that on the surface of the undoped coating (1.0 × 103 cells/cm2). Decreased corrosivity and enhanced cell affinity of the modified MgCa alloys (CaP coated and Zn and Ga doped, with Ga-doped ones having the greatest positive effect) make them novel and promising candidates as biodegradable metallic implant materials for the treatment of bone damages and other orthopedic applications.


Assuntos
Ligas/química , Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/química , Implantes Absorvíveis , Ligas/toxicidade , Animais , Cálcio/química , Cálcio/toxicidade , Fosfatos de Cálcio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Corrosão , Módulo de Elasticidade , Gálio/química , Gálio/toxicidade , Humanos , Magnésio/química , Magnésio/toxicidade , Teste de Materiais , Camundongos , Molhabilidade , Zinco/química , Zinco/toxicidade
4.
ACS Biomater Sci Eng ; 7(11): 5189-5205, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661388

RESUMO

Effective skeletal muscle tissue engineering relies on control over the scaffold architecture for providing muscle cells with the required directionality, together with a mechanical property match with the surrounding tissue. Although recent advances in 3D printing fulfill the first requirement, the available synthetic polymers either are too rigid or show unfavorable surface and degradation profiles for the latter. In addition, natural polymers that are generally used as hydrogels lack the required mechanical stability to withstand the forces exerted during muscle contraction. Therefore, one of the most important challenges in the 3D printing of soft and elastic tissues such as skeletal muscle is the limitation of the availability of elastic, durable, and biodegradable biomaterials. Herein, we have synthesized novel, biocompatible and biodegradable, elastomeric, segmented polyurethane and polyurethaneurea (TPU) copolymers which are amenable for 3D printing and show high elasticity, low modulus, controlled biodegradability, and improved wettability, compared to conventional polycaprolactone (PCL) and PCL-based TPUs. The degradation profile of the 3D printed TPU scaffold was in line with the potential tissue integration and scaffold replacement process. Even though TPU attracts macrophages in 2D configuration, its 3D printed form showed limited activated macrophage adhesion and induced muscle-like structure formation by C2C12 mouse myoblasts in vitro, while resulting in a significant increase in muscle regeneration in vivo in a tibialis anterior defect in a rat model. Effective muscle regeneration was confirmed with immunohistochemical assessment as well as evaluation of electrical activity produced by regenerated muscle by EMG analysis and its force generation via a custom-made force transducer. Micro-CT evaluation also revealed production of more muscle-like structures in the case of implantation of cell-laden 3D printed scaffolds. These results demonstrate that matching the tissue properties for a given application via use of tailor-made polymers can substantially contribute to the regenerative outcomes of 3D printed tissue engineering scaffolds.


Assuntos
Elastômeros , Poliuretanos , Animais , Camundongos , Músculo Esquelético , Impressão Tridimensional , Ratos
5.
J Mater Sci Mater Med ; 32(7): 73, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152502

RESUMO

Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


Assuntos
Biomassa , Carbono/química , Mioblastos/citologia , Impressão Tridimensional , Alga Marinha/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Catálise , Linhagem Celular , Condutividade Elétrica , Eletroquímica , Camundongos , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Nanofibras/química , Nanotubos de Carbono/química , Poliésteres/química , Regeneração , Análise Espectral Raman , Estresse Mecânico
6.
J Mater Sci Mater Med ; 32(4): 34, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33763760

RESUMO

Synthetic polymers remain to be a major choice for scaffold fabrication due to their structural stability and mechanical strength. However, the lack of functional moieties limits their application for cell-based therapies which necessitate modification and functionalization. Blending synthetic polymers with natural components is a simple and effective way to achieve the desired biological properties for a scaffold. Herein, nanofibrous mats made of polycaprolactone (PCL) and egg white protein (EWP) blend were developed and further evaluated for use as a scaffold for tissue engineering applications. Homogeneous distribution of EWP was achieved throughout the nanofibrous mats, as shown by immunohistochemistry. ATR-FTIR analysis and contact angle measurements have further confirmed the presence of EWP on the surface of the samples. The swelling test showed that PCL/EWP nanofibers have higher water uptake than PCL nanofibrous mats. Also, EWP addition on the nanofibrous mats resulted in an increase in the tensile strength and Young's modulus of the mats, indicating that the presence of protein can greatly enhance the mechanical properties of the mats. A significantly higher, more uniform, and dispersed cell spreading was observed on days 7 and 14 than that on neat PCL mats, demonstrating the importance of providing the required cues for cell homing by the availability of EWP. Hence, EWP is shown to be a simple and low-cost source for the functionalization of PCL nanofibrous mats. EWP is, therefore, a facile candidate to enhance cellular interactions of synthetic polymers for a wide range of tissue engineering applications.


Assuntos
Proteínas do Ovo/química , Nanofibras/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/instrumentação , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Proliferação de Células , Sobrevivência Celular , Galinhas , Ovos , Módulo de Elasticidade , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Faloidina/química , Medicina Regenerativa/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais , Água/química
7.
Biomed Mater ; 15(5): 055017, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32442983

RESUMO

Determination of a stem cell source with sufficient myogenic differentiation capacity that can be easily obtained in large quantities is of great importance in skeletal muscle regeneration therapies. Adipose-derived stem cells (ASCs) are readily available, can be isolated from fat tissue with high yield and possess myogenic differentiation capacity. Consequently, ASCs have high applicability in muscle regenerative therapies. However, a key challenge is their low differentiation efficiency. In this study, we have explored the potential of mimicking the natural microenvironment of the skeletal muscle tissue to enhance ASC myogenesis by inducing 3D cellular alignment and using dynamic biomimetic culture. ASCs were entrapped and 3D aligned in parallel within fibrin-based microfibers and subjected to uniaxial cyclic stretch. 3D cell alignment was shown to be necessary for achieving and maintaining the stiffness of the construct mimicking the natural tissue (12 ± 1 kPa), where acellular aligned fibers and cell-laden random fibers had stiffness values of 4 ± 1 and 5 ± 2 kPa, respectively, at the end of 21 d. The synergistic effect of 3D cell alignment and biomimetic dynamic culture was evaluated on cell proliferation, viability and the expression of muscle-specific markers (immunofluorescent staining for MyoD1, myogenin, desmin and myosin heavy chain). It was shown that the myogenic markers were only expressed on the aligned-dynamic culture samples on day 21 of dynamic culture. These results demonstrate that 3D skeletal muscle grafts can be developed using ASCs by mimicking the structural and physiological muscle microenvironment.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Biomimética , Desenvolvimento Muscular , Células-Tronco/citologia , Adipócitos/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Citometria de Fluxo , Humanos , Hidrogéis/química , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , Miogenina/metabolismo , Pressão , Regeneração , Estresse Mecânico , Células Estromais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
J Tissue Eng Regen Med ; 14(2): 347-354, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826319

RESUMO

Dual meshes are often preferred in the treatment of umbilical and incisional hernias where the abdominal wall defect is large. These meshes are generally composed of either two nonabsorbable layers or a nonabsorbable layer combined with an absorbable one that degrades within the body upon healing of the defect. The most crucial point in the design of a dual mesh is to produce the respective layers based on the structure and requirements of the recipient site. We herein developed a dual mesh that consists of two layers: a nanofibrous layer made of poly (glycerol sebacate)/poly (caprolactone) (PGS/PCL) to support the healing of the abdominal wall defect and a nondegradable, nonadhesive smooth layer made of polycarbonateurethane (PU) with suitable properties to avoid the adhesion of the viscera to the mesh. To prepare the double-sided structure, PGS/PCL was directly electrospun onto the PU film. This processing approach provided a final product with well-integrated layers as observed by a scanning electron microscope. Tensile test performed at the dry state of the samples showed that the dual mesh has the ability to elongate seven times more as compared with the commercially available counterparts, mimicking the native tissue properties. The degradation test carried out at physiological conditions revealed that PGS started to degrade within the first 15 days. in vitro studies with human umbilical vein endothelial cells demonstrated the double function of the meshes, in which PU layer did not allow cell adhesion, whereas PGS/PCL layer has the ability to support cell adhesion and proliferation. Therefore, the material developed in this study has the potential to be an alternative to the existing hernia mesh products.


Assuntos
Decanoatos/química , Células Endoteliais/patologia , Glicerol/análogos & derivados , Hérnia Abdominal/cirurgia , Teste de Materiais , Nanofibras/química , Polímeros/química , Telas Cirúrgicas , Resistência à Tração , Animais , Caproatos , Adesão Celular , Linhagem Celular , Proliferação de Células , Elasticidade , Glicerol/química , Herniorrafia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lactonas , Camundongos , Microscopia Eletrônica de Varredura , Poliésteres , Polipropilenos , Pressão , Próteses e Implantes , Solventes , Estresse Mecânico , Aderências Teciduais
9.
Biomed Mater ; 14(2): 025014, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30665203

RESUMO

A key challenge in skeletal muscle tissue engineering is the choice of a proper scaffolding material as it should demonstrate elastic behavior to withstand and support the dynamic loading of the tissue microenvironment while being biodegradable and biocompatible. In this study, we tested the applicability of a novel biodegradable polyurethane (PU) elastomer chain extended with fibrinogen (Fib) to fulfill these requirements. Biodegradable polyurethane-fibrinogen (PU-Fib) elastomers were synthesized by step-wise condensation polymerization. Firstly, PU prepolymer was synthesized and then Fib was integrated into PU prepolymer during the second step of polymerization. The chemical, thermal, viscoelastic, mechanical and biodegradation properties of PU-Fib were characterized. FTIR-ATR spectrum showed amide bands specific to PU and Fib, DSC thermograms showed the suitable integration between the components. Dynamic mechanical analysis revealed Tg and Tα* transitions at 64.5 °C and 38.4 °C, respectively. PU and Fib had shown chemically compatible interactions and when compared to PCL, PU-Fib possessed viscoelastic properties more suitable to the native tissue. PU-Fib films were produced and seeded with C2C12 mouse myoblasts. Uniaxial cyclic stretch was applied to the cell seeded films for 21 d to mimic the native dynamic tissue microenvironment. Cell proliferation, viability and the expression of muscle-specific markers (immunofluorescent staining for myogenin and myosin heavy chain) were assessed. Myoblasts proliferated well on PU-Fib films; aligned parallel along their long edge, and express myogenic markers under biomimetic dynamic culture. It was possible to culture myoblasts with high viability on PU-Fib elastomeric films mimicking native muscle microenvironment.


Assuntos
Materiais Biocompatíveis/química , Músculo Esquelético/metabolismo , Poliuretanos/química , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Elasticidade , Elastômeros/química , Fibroblastos/metabolismo , Imuno-Histoquímica , Camundongos , Mioblastos/metabolismo , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Alicerces Teciduais/química , Viscosidade
10.
Stem Cells Int ; 2012: 374676, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242032

RESUMO

Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...