Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400203, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803318

RESUMO

Controlled fabrication of nanopores in 2D materials offer the means to create robust membranes needed for ion transport and nanofiltration. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation; however, aberration-corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a sub-Å sized electron beam for atomic manipulation along with atomic resolution imaging. Here, a method for automated nanopore fabrication is utilized with real-time atomic visualization to enhance the mechanistic understanding of beam-induced transformations. Additionally, an electron beam simulation technique, Electron-Beam Simulator (E-BeamSim) is developed to observe the atomic movements and interactions resulting from electron beam irradiation. Using the MXene Ti3C2Tx, the influence of temperature on nanopore fabrication is explored by tracking atomic transformations and find that at room temperature the electron beam irradiation induces random displacement and results in titanium pileups at the nanopore edge, which is confirmed by E-BeamSim. At elevated temperatures, after removal of the surface functional groups and with the increased mobility of atoms results in atomic transformations that lead to the selective removal of atoms layer by layer. This work can lead to the development of defect engineering techniques within functionalized MXene layers and other 2D materials.

2.
Adv Mater ; 34(2): e2106426, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34647655

RESUMO

Since their discovery in late 1940s, perovskite ferroelectric materials have become one of the central objects of condensed matter physics and materials science due to the broad spectrum of functional behaviors they exhibit, including electro-optical phenomena and strong electromechanical coupling. In such disordered materials, the static properties of defects such as oxygen vacancies are well explored but the dynamic effects are less understood. In this work, the first observation of enhanced electromechanical response in BaTiO3 thin films is reported driven via dynamic local oxygen vacancy control in piezoresponse force microscopy (PFM). A persistence in peizoelectricity past the bulk Curie temperature and an enhanced electromechanical response due to a created internal electric field that further enhances the intrinsic electrostriction are explicitly demonstrated. The findings are supported by a series of temperature dependent band excitation PFM in ultrahigh vacuum and a combination of modeling techniques including finite element modeling, reactive force field, and density functional theory. This study shows the pivotal role that dynamics of vacancies in complex oxides can play in determining functional properties and thus provides a new route toward- achieving enhanced ferroic response with higher functional temperature windows in ferroelectrics and other ferroic materials.

3.
J Chem Theory Comput ; 17(11): 6705-6712, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34644081

RESUMO

We have developed a machine learning (ML)-assisted Hybrid ReaxFF simulation method ("Hybrid/Reax"), which alternates reactive and non-reactive molecular dynamics simulations with the assistance of ML models to simulate phenomena that require longer time scales and/or larger systems than are typically accessible to ReaxFF. Hybrid/Reax uses a specialized tracking tool during the reactive simulations to further accelerate chemical reactions. Non-reactive simulations are used to equilibrate the system after the reactive simulation stage. ML models are used between reactive and non-reactive stages to predict non-reactive force field parameters of the system based on the updated bond topology. Hybrid/Reax simulation cycles can be continued until the desired chemical reactions are observed. As a case study, this method was used to study the cross-linking of a polyethylene (PE) matrix analogue (decane) with the cross-linking agent dicumyl peroxide (DCP). We were able to run relatively long simulations [>20 million molecular dynamics (MD) steps] on a small test system (4660 atoms) to simulate cross-linking reactions of PE in the presence of DCP. Starting with 80 PE molecules, more than half of them cross-linked by the end of the Hybrid/Reax cycles on a single Xeon processor in under 48 h. This simulation would take approximately 1 month if run with pure ReaxFF MD on the same machine.

4.
J Phys Chem B ; 124(25): 5311-5322, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32495628

RESUMO

In this study, we investigate the reactivity and mechanical properties of poly(1,6-hexanediol-co-citric acid) via ReaxFF molecular dynamics simulations. We implement an accelerated scheme within the ReaxFF framework to study the hydrolysis reaction of the polymer which is provided with a sufficient amount of energy known as the restrain energy after a suitable pretransition-state configuration is obtained to overcome the activation energy barrier and the desired product is obtained. The validity of the ReaxFF force field is established by comparing the ReaxFF energy barriers of ester and ether hydrolysis with benchmark DFT values in the literature. We perform chemical and mechanical degradation of polymer chain bundles at 300 K. We find that ester hydrolyzes faster than ether because of the lower activation energy barrier of the reaction. The selectivity of the bond-boost scheme has been demonstrated by lowering the boost parameters of the accelerated simulation, which almost stops the ether hydrolysis. Mechanical degradation of prehydrolyzed and intermittent hydrolyzed polymer bundles is performed along the longitudinal direction at two different strain rates. We find that the tensile modulus of the polymers increases with increase in strain rates, which shows that polymers show a strain-dependent behavior. The tensile modulus of the polyester-ether is higher than polyester but reaches yield stress faster than polyester. This makes polyester more ductile than polyester-ether.

5.
Phys Chem Chem Phys ; 21(33): 18240-18249, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31393478

RESUMO

Ferroelectric materials such as barium titanate (BaTiO3) have a wide range of applications in nano scale electronic devices due to their outstanding properties. In this study, we developed an easily extendable atomistic ReaxFF reactive force field for BaTiO3 that can capture both its field- and temperature-induced ferroelectric hysteresis and corresponding changes due to surface chemistry and bulk defects. Using our force field, we were able to reproduce and explain a number of experimental observations: (1) the existence of a critical thickness of 4.8 nm below which ferroelectricity vanishes in BaTiO3; (2) migration and clustering of oxygen vacancies (OVs) in BaTiO3 and a reduction in the polarization and the Curie temperature due to the OVs; (3) domain wall interaction with the surface chemistry to influence the ferroelectric switching and polarization magnitude. This new computational tool opens up a wide range of possibilities for making predictions for realistic ferroelectric interfaces in energy-conversion, electronic and neuromorphic systems.

6.
Nat Commun ; 9(1): 2266, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891836

RESUMO

Developing strategies for atomic-scale controlled synthesis of new two-dimensional (2D) functional materials will directly impact their applications. Here, using in situ aberration-corrected scanning transmission electron microscopy, we obtain direct insight into the homoepitaxial Frank-van der Merwe atomic layer growth mechanism of TiC single adlayers synthesized on surfaces of Ti3C2 MXene substrates with the substrate being the source material. Activated by thermal exposure and electron-beam irradiation, hexagonal TiC single adlayers form on defunctionalized surfaces of Ti3C2 MXene at temperatures above 500 °C, generating new 2D materials Ti4C3 and Ti5C4. The growth mechanism for a single TiC adlayer and the energies that govern atom migration and diffusion are elucidated by comprehensive density functional theory and force-bias Monte Carlo/molecular dynamics simulations. This work could lead to the development of bottom-up synthesis methods using substrates terminated with similar hexagonal-metal surfaces, for controllable synthesis of larger-scale and higher quality single-layer transition metal carbides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...