Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 66, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024895

RESUMO

BACKGROUND: Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biotransformation studies because of their ability to perform modifications in complex structures with a high degree of stereospecificity. RESULTS: This study focuses on biotransformation studies on cyclocephagenol (1), a novel cycloartane-type sapogenin from Astragalus species, and its 12-hydroxy derivatives (2 and 3) to obtain new telomerase activators. Since the hTERT protein levels of cyclocephagenol (1) and its 12-hydroxy derivatives (2 and 3) on HEKn cells were found to be notable, biotransformation studies were carried out on cyclocephagenol and its 12-hydroxy derivatives using Camarosporium laburnicola, an endophytic fungus isolated from Astragalus angustifolius. Later, immunoblotting and PCR-based ELISA assay were used to screen starting compounds and biotransformation products for their effects on hTERT protein levels and telomerase activation. All compounds showed improved telomerase activation compared to the control group. CONCLUSIONS: As a result of biotransformation studies, seven new metabolites were obtained and characterized, verifying the potential of C. laburnicola as a biocatalyst. Additionally, the bioactivity results showed that this endophytic biocatalyst is unique in transforming the metabolites of its host to afford potent telomerase activators.


Assuntos
Ascomicetos , Sapogeninas , Telomerase , Sapogeninas/metabolismo , Telomerase/metabolismo , Ascomicetos/metabolismo , Biotransformação
2.
Chem Biol Drug Des ; 101(6): 1283-1298, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762979

RESUMO

A series of novel noncovalent glycine/ß-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50  = 7.10 ± 0.10-41.08 ± 0.14 µM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (ß1, ß2, and ß5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the ß5 subunit compared with ß1 and ß2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 µM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of ß5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 µM. This compound showed an IC50 value of 32.30 ± 0.45 µM against ß5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with ß5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.


Assuntos
Antineoplásicos , Naftoquinonas , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Complexo de Endopeptidases do Proteassoma , Glicina/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/química , beta-Alanina/farmacologia , Anilidas/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células , Antineoplásicos/farmacologia
3.
Free Radic Biol Med ; 188: 105-116, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718303

RESUMO

Aging is well-characterized by the gradual decline of cellular functionality. As redox balance, proteostasis, and telomerase systems have been found to be associated with aging and age-related diseases, targeting these systems with small compounds has been considered a promising therapeutic approach. Cycloastragenol (CA), a small molecule telomerase activator obtained from Astragalus species, has been reported to positively affect several age-related pathophysiologies, but the mechanisms underlying CA activity have yet to be reported. Here, we presented that CA increased NRF2 nuclear localization and activity leading to upregulation of cytoprotective enzymes and attenuation of oxidative stress-induced ROS levels. Furthermore, CA-mediated induction of telomerase activity was found to be regulated by NRF2. CA not only increased the expression of hTERT but also its nuclear localization via upregulating the Hsp90-chaperon complex. In addition to modulating nuclear hTERT levels at unstressed conditions, CA alleviated oxidative stress-induced mitochondrial hTERT levels while increasing nuclear hTERT levels. Concomitantly, H2O2-induced mitochondrial ROS level was found to be significantly decreased by CA administration. Our data also revealed that CA strongly enhanced proteasome activity and assembly. More importantly, the proteasome activator effect of CA is dependent on the induction of telomerase activity, which is mediated by NRF2 system. In conclusion, our results not only revealed the cross-talk among NRF2, telomerase, and proteasome systems but also that CA functions at the intersection of these three major aging-related cellular pathways.


Assuntos
Telomerase , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sapogeninas , Telomerase/genética , Telomerase/metabolismo
4.
Sci Rep ; 12(1): 869, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042898

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) is a well-characterized mechanism of protein quality control by removal of misfolded or unfolded proteins. The tight regulation of ERAD is critical for protein homeostasis as well as lipid metabolism. Although the mechanism is complex, all ERAD branches converge on p97/VCP, a key protein in the retrotranslocation step. The multifunctionality of p97/VCP relies on its multiple binding partners, one of which is the endogenous ERAD inhibitor, SVIP (small VCP-interacting protein). As SVIP is a promising target for the regulation of ERAD, we aimed to assess its novel physiological roles. We revealed that SVIP is highly expressed in the rat adrenal gland, especially in the cortex region, at a consistently high level during postnatal development, unlike the gradual increase in expression seen in developing nerves. Steroidogenic stimulators caused a decrease in SVIP mRNA expression and increase in SVIP protein degradation in human adrenocortical H295R cells. Interestingly, silencing of SVIP diminished cortisol secretion along with downregulation of steroidogenic enzymes and proteins involved in cholesterol uptake and cholesterol biosynthesis. A certain degree of SVIP overexpression mainly increased the biosynthesis of cortisol as well as DHEA by enhancing the expression of key steroidogenic proteins, whereas exaggerated overexpression led to apoptosis, phosphorylation of eIF2α, and diminished adrenal steroid hormone biosynthesis. In conclusion, SVIP is a novel regulator of adrenal cortisol and DHEA biosynthesis, suggesting that alterations in SVIP expression levels may be involved in the deregulation of steroidogenic stimulator signaling and abnormal adrenal hormone secretion.


Assuntos
Degradação Associada com o Retículo Endoplasmático
5.
Anticancer Agents Med Chem ; 22(9): 1761-1768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34053426

RESUMO

BACKGROUND: The complexity of cancer biology and the development of chemotherapy resistance are two main obstacles to cancer treatment and necessitate novel anticancer molecules that target different cell death pathways. Modulation of Endoplasmic Reticulum (ER) stress and subsequent activation of the Unfolded Protein Response (UPR) has been proposed as a potential chemotherapeutic target, as prolonged ER stress can lead to cell death via apoptosis or necrosis. OBJECTIVE: The present study aims to evaluate the molecular mechanism underlying the cytotoxic activity of selected urea and carbohydrazide derivatives. METHODS: Cell proliferation assays were performed on HeLa, Capan-1, MCF-7, HCC-1937, and MRC-5 cell lines by WST-1 assay. The expression levels of selected ER stress, autophagy, and apoptosis marker proteins were compared by immunoblotting to characterize the underlying mechanism of cytotoxicity. Flow cytometry was used to detect apoptosis. RESULTS: Of the tested cytotoxic compounds, 3a, 4a, 5a, 6a, and 1b dramatically and 5b moderately increased ER stress-related CHOP protein levels. Interestingly, 5b but not 3a, 4a, 5a, 6a, or 1b increased the expression of proapoptotic proteins such as cleaved PARP-1 and cleaved caspase-3 and -7. The flow-cytometry analysis further confirmed that the cytotoxic activity of 5b but not the other compounds is mediated by apoptosis, demonstrated by a significant increase in the percentage of late apoptotic cells (7-AAD/annexin V double-positive cells). CONCLUSION: Our results suggest that changing a substituent from trifluoromethyl to nitro in urea and carbohydrazide core structure alters the cell death mechanism from apoptosis to an apoptosis-independent cell death pathway. This study shows an example of how such simple modifications of a core chemical structure could cause the induction of divergent cell death pathways.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Humanos , Hidrazinas , Resposta a Proteínas não Dobradas , Ureia/farmacologia
6.
J Biochem Mol Toxicol ; 35(12): e22915, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34519134

RESUMO

Increased levels of reactive oxygen and nitrogen species play an important role in the development and progression of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The overproduction of these highly reactive chemical species leads to DNA damage and subsequent activation of the poly(ADP-ribose)polymerase (PARP) enzyme. Several studies have demonstrated the potential use of PARP inhibitors for neuroprotection. We previously reported that the dual Src/Abl kinase inhibitor bosutinib (BOS) decreases PARP activity and acts as a chemosensitizer in cancer cells. In this study, we evaluated the neuroprotective potential of BOS with respect to its inhibitory effect on cellular poly(ADP-ribos)ylation (PARylation) using a 3-morpholinosydnonimine (SIN1)-mediated cellular toxicity model. Our data suggest that pretreatment with BOS, especially at lower doses, significantly decreased the level of SIN1-induced cellular PARylation. This regulation pattern of PARylation was found to be associated with the protective effect of BOS against SIN1 on the viability of retinoic acid-differentiated SH-SY5Y cells. Furthermore, while PARP-1 expression was decreased, phosphorylation of SAPK/JNK was not reverted at the observed neuroprotective doses of BOS. In conclusion, we suggest a novel mechanism for the neuroprotective effect of BOS involving the inhibition of cellular PARylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Compostos de Anilina/farmacologia , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Poli ADP Ribosilação/efeitos dos fármacos , Quinolinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Tretinoína/farmacologia
7.
Bioorg Chem ; 109: 104708, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621779

RESUMO

Cycloastragenol [20(R),24(S)-epoxy-3ß,6α,16ß,25-tetrahydroxycycloartane] (CA), the principle sapogenol of many cycloartane-type glycosides found in Astragalus genus, is currently the only natural product in the anti-aging market as telomerase activator. Here, we report biotransformation of 20(27)-octanor-cycloastragenol (1), a thermal degradation product of CA, using Astragalus species originated endophytic fungi, viz. Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae and Camarosporium laburnicola. Fifteen new biotransformation products (2-16) were isolated, and their structures were established by NMR and HRESIMS. Endophytic fungi were found to be capable of performing hydroxylation, oxidation, ring cleavage-methyl migration, dehydrogenation and Baeyer-Villiger type oxidation reactions on the starting compound (1), which would be difficult to achieve by conventional synthetic methods. In addition, the ability of the metabolites to increase telomerase activation in Hekn cells was evaluated, which showed from 1.08 to 12.4-fold activation compared to the control cells treated with DMSO. Among the compounds tested, 10, 11 and 12 were found to be the most potent in terms of telomerase activation with 12.40-, 7.89- and 5.43-fold increase, respectively (at 0.1, 2 and 10 nM concentrations, respectively).


Assuntos
Astrágalo/microbiologia , Fungos/metabolismo , Sapogeninas/química , Sapogeninas/farmacologia , Telomerase/metabolismo , Biotransformação , Fungos/classificação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Especificidade da Espécie
8.
Eur J Med Chem ; 209: 112890, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039723

RESUMO

A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, ß1 subunit), trypsin-like (T-L, ß2 subunit) and chymotrypsin-like (ChT-L, ß5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 µM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 µM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 µM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 µM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.


Assuntos
Naftoquinonas/química , Naftoquinonas/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Inibidores de Proteassoma/síntese química , Sulfonamidas/síntese química
9.
J Nat Prod ; 82(11): 2979-2985, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31713424

RESUMO

Biotransformation of Astragalus sapogenins (cycloastragenol (1) and astragenol (2)) by Astragalus species originated endophytic fungi resulted in the production of five new metabolites (3, 7, 10, 12, 14) together with 10 known compounds. The structures of the new compounds were established by NMR spectroscopic and HRMS analysis. Oxygenation, oxidation, epoxidation, dehydrogenation, and ring cleavage reactions were observed on the cycloartane (9,19-cyclolanostane) nucleus. The ability of the compounds to increase telomerase activity in neonatal cells was also evaluated. After prescreening studies to define potent telomerase activators, four compounds were selected for subsequent bioassays. These were performed using very low doses ranging from 0.1 to 30 nM compared to the control cells treated with DMSO. The positive control cycloastragenol and 8 were found to be the most active compounds, with 5.2- (2 nM) and 5.1- (0.5 nM) fold activations versus DMSO, respectively. At the lowest dose of 0.1 nM, compounds 4 and 13 provided 3.5- and 3.8-fold activations, respectively, while cycloastragenol showed a limited activation (1.5-fold).


Assuntos
Astrágalo/microbiologia , Endófitos/metabolismo , Sapogeninas/química , Sapogeninas/metabolismo , Linhagem Celular , Ativadores de Enzimas/farmacologia , Humanos , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Queratinócitos/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Telomerase/efeitos dos fármacos
10.
Chem Biol Interact ; 307: 167-178, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059704

RESUMO

Polyether compounds, a large group of biologically active metabolites produced by Streptomyces species have been reported to show a variety of bioactivity such as antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Since some of these compounds target cancer stem cells and multi-drug resistant cancer cells, this family of compounds have become of high interest. In this study, three polyether-type metabolites (1-3), one of which was a new natural product (3), were isolated from the marine derived Streptomyces cacaoi via antimicrobial activity-guided fractionation studies. As several polyether compounds with structural similarity such as monensin have been linked with autophagy and cell death, we first assessed the cytotoxicity of these three compounds. Compounds 2 and 3, but not 1, were found to be cytotoxic in several cell lines with a higher potency towards cancer cells. Furthermore, 2 and 3 caused accumulation of both autophagy flux markers LC3-II and p62 along with cleavage of caspase-3, caspase-9 and poly (ADP-ribose) polymerase 1 (PARP-1). Interestingly, prolonged treatment of the compounds caused a dramatic downregulation of the proteins related to autophagasome formation in a dose dependent manner. Our findings provide insights on the molecular mechanisms of the polyether-type polyketides, and signify their potency as chemotherapeutic agents through inhibiting autophagy and inducing apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Produtos Biológicos/farmacologia , Streptomyces/química , Produtos Biológicos/isolamento & purificação , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Conformação Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Streptomyces/metabolismo
11.
Opt Express ; 19(18): 17647-52, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935132

RESUMO

We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 µm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...