Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Med ; 29(1): 64, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37183261

RESUMO

BACKGROUND: Low-grade gliomas (LGG) are a type of brain tumor that can be lethal, and it is essential to identify genes that are correlated with patient prognosis. In this study, we aimed to use CRISPR-cas9 screening data to identify key signaling pathways and develop a genetic signature associated with high-risk, low-grade glioma patients. METHODS: The study used CRISPR-cas9 screening data to identify essential genes correlated with cell survival in LGG. We used RNA-seq data to identify differentially expressed genes (DEGs) related to cell viability. Moreover, we used the least absolute shrinkage and selection operator (LASSO) method to construct a genetic signature for predicting overall survival in patients. We performed enrichment analysis to identify pathways mediated by DEGs, overlapping genes, and genes shared in the Weighted correlation network analysis (WGCNA). Finally, the study used western blot, qRT-PCR, and IHC to detect the expression of hub genes from signature in clinical samples. RESULTS: The study identified 145 overexpressed oncogenes in low-grade gliomas using the TCGA database. These genes were intersected with lethal genes identified in the CRISPR-cas9 screening data from Depmap database, which are enriched in Hippo pathways. A total of 19 genes were used to construct a genetic signature, and the Hippo signaling pathway was found to be the predominantly enriched pathway. The signature effectively distinguished between low- and high-risk patients, with high-risk patients showing a shorter overall survival duration. Differences in hub gene expression were found in different clinical samples, with the protein and mRNA expression of REP65 being significantly up-regulated in tumor cells. The study suggests that the Hippo signaling pathway may be a critical regulator of viability and tumor proliferation and therefore is an innovative new target for treating cancerous brain tumors, including low-grade gliomas. CONCLUSION: Our study identified a novel genetic signature associated with high-risk, LGG patients. We found that the Hippo signaling pathway was significantly enriched in this signature, indicating that it may be a critical regulator of tumor viability and proliferation in LGG. Targeting the Hippo pathway could be an innovative new strategy for treating LGG.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Via de Sinalização Hippo , Sistemas CRISPR-Cas/genética , Genes Letais , Glioma/genética , Oncogenes , Neoplasias Encefálicas/genética
3.
Funct Integr Genomics ; 23(2): 84, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930242

RESUMO

The growth of cancer, the effectiveness of treatment, and prognosis are all closely related to PANoptosis (include pyroptosis, apoptosis, and necroptosis). It remains unclear whether PANoptosis genes (PANGs) may contribute to lower-grade glioma (LGG) tumor microenvironment (TME). In this study, we collected 1203 LGG samples from three public databases and reported that PANoptosis involves TME interaction and prognosis. Firstly, we provided a comprehensive review of the pan-cancer landscape of PANGs in terms of expression characteristics, prognostic value, mutational profile, and pathway regulation. Then, we identified two distinct PANclusters, each with its own molecular, clinical, and immunological profile. We then developed a scoring system for LGG patients called PANscore. As well as investigating immune characteristics, tumor mutational characteristics, and drug sensitivity, we examined the differences between groups with high PANscores and those with low PANscores. Based on this PANscore and clinicopathological variables, an instant nomogram for predicting clinical survival in LGG patients was developed. Our thorough examination of PANGs in LGG revealed their probable function in TME, as well as their clinicopathological characteristics and prognosis. These discoveries could deepen our comprehension of PANGs in LGG and provide doctors fresh perspectives on how to forecast prognosis and create more efficient, individualized treatment plans.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Glioma/genética , Apoptose , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...