Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(12): e2203485, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808826

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Current COPD diagnosis (i.e., spirometry) could be unreliable because the test depends on an adequate effort from the tester and testee. Moreover, the early diagnosis of COPD is challenging. The authors address COPD detection by constructing two novel physiological signals datasets (4432 records from 54 patients in the WestRo COPD dataset and 13824 medical records from 534 patients in the WestRo Porti COPD dataset). The authors demonstrate their complex coupled fractal dynamical characteristics and perform a fractional-order dynamics deep learning analysis to diagnose COPD. The authors found that the fractional-order dynamical modeling can extract distinguishing signatures from the physiological signals across patients with all COPD stages-from stage 0 (healthy) to stage 4 (very severe). They use the fractional signatures to develop and train a deep neural network that predicts COPD stages based on the input features (such as thorax breathing effort, respiratory rate, or oxygen saturation). The authors show that the fractional dynamic deep learning model (FDDLM) achieves a COPD prediction accuracy of 98.66% and can serve as a robust alternative to spirometry. The FDDLM also has high accuracy when validated on a dataset with different physiological signals.


Assuntos
Aprendizado Profundo , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Espirometria , Redes Neurais de Computação
2.
Proc Natl Acad Sci U S A ; 120(2): e2214634120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595679

RESUMO

The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer's disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Adulto , Humanos , Disfunção Cognitiva/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos
3.
Sci Rep ; 11(1): 10424, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001937

RESUMO

The global rise of COVID-19 health risk has triggered the related misinformation infodemic. We present the first analysis of COVID-19 misinformation networks and determine few of its implications. Firstly, we analyze the spread trends of COVID-19 misinformation and discover that the COVID-19 misinformation statistics are well fitted by a log-normal distribution. Secondly, we form misinformation networks by taking individual misinformation as a node and similarity between misinformation nodes as links, and we decipher the laws of COVID-19 misinformation network evolution: (1) We discover that misinformation evolves to optimize the network information transfer over time with the sacrifice of robustness. (2) We demonstrate the co-existence of fit get richer and rich get richer phenomena in misinformation networks. (3) We show that a misinformation network evolution with node deletion mechanism captures well the public attention shift on social media. Lastly, we present a network science inspired deep learning framework to accurately predict which Twitter posts are likely to become central nodes (i.e., high centrality) in a misinformation network from only one sentence without the need to know the whole network topology. With the network analysis and the central node prediction, we propose that if we correctly suppress certain central nodes in the misinformation network, the information transfer of network would be severely impacted.


Assuntos
COVID-19 , Comunicação , Mídias Sociais/estatística & dados numéricos , Humanos
4.
Sci Rep ; 10(1): 15078, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934305

RESUMO

Understanding the mechanisms by which neurons create or suppress connections to enable communication in brain-derived neuronal cultures can inform how learning, cognition and creative behavior emerge. While prior studies have shown that neuronal cultures possess self-organizing criticality properties, we further demonstrate that in vitro brain-derived neuronal cultures exhibit a self-optimization phenomenon. More precisely, we analyze the multiscale neural growth data obtained from label-free quantitative microscopic imaging experiments and reconstruct the in vitro neuronal culture networks (microscale) and neuronal culture cluster networks (mesoscale). We investigate the structure and evolution of neuronal culture networks and neuronal culture cluster networks by estimating the importance of each network node and their information flow. By analyzing the degree-, closeness-, and betweenness-centrality, the node-to-node degree distribution (informing on neuronal interconnection phenomena), the clustering coefficient/transitivity (assessing the "small-world" properties), and the multifractal spectrum, we demonstrate that murine neurons exhibit self-optimizing behavior over time with topological characteristics distinct from existing complex network models. The time-evolving interconnection among murine neurons optimizes the network information flow, network robustness, and self-organization degree. These findings have complex implications for modeling neuronal cultures and potentially on how to design biological inspired artificial intelligence.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Inteligência Artificial , Células Cultivadas , Cognição/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Neurogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...