Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490339

RESUMO

X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Humanos , Modelos Animais de Doenças , Proteínas de Membrana Transportadoras/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
J Orthop Surg (Hong Kong) ; 31(2): 10225536231177102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288764

RESUMO

BACKGROUND: Metastasis is one of the most significant prognostic factors in osteosarcoma (OS). The goal of this study was to construct a clinical prediction model for OS patients in a population cohort and to evaluate the factors influencing the occurrence of pulmonary metastasis. METHODS: We collected data from 612 patients with osteosarcoma (OS), and 103 clinical indicators were collected. After the data were filtered, the patients were randomly divided into training and validation cohorts by using random sampling. The training cohort included 191 patients with pulmonary metastasis in OS and 126 patients with non-pulmonary metastasis, and the validation cohort included 50 patients with pulmonary metastasis in OS and 57 patients with non-pulmonary metastasis. Univariate logistics regression analysis, LASSO regression analysis and multivariate logistic regression analysis were performed to identify potential risk factors for pulmonary metastasis in patients with osteosarcoma. A nomogram was developed that included risk influencing variables selected by multivariable analysis, and used the concordance index (C-index) and calibration curve to validate the model. Receiver operating characteristic curve (ROC), decision analysis curve (DCA) and clinical impact curve (CIC) were employed to assess the model. In addition, we used a predictive model on the validation cohort. RESULTS: Logistic regression analysis was used to identify independent predictors [N Stage + Alkaline phosphatase (ALP)+Thyroid stimulating hormone (TSH)+Free triiodothyronine (FT3)]. A nomogram was constructed to predict the risk of pulmonary metastasis in patients with osteosarcoma. The performance was evaluated by the concordance index (C-index) and calibration curve. The ROC curve provides the predictive power of the nomogram (AUC = 0.701 in the training cohort, AUC = 0.786 in the training cohort). Decision curve analysis (DCA) and clinical impact curve (CIC) demonstrated the clinical value of the nomogram and higher overall net benefits. CONCLUSIONS: Our study can help clinicians effectively predict the risk of lung metastases in osteosarcoma with more readily available clinical indicators, provide more personalized diagnosis and treatment guidance, and improve the prognosis of patients. MINI ABSTRACT: A new risk model was constructed to predict the pulmonary metastasis in patients with osteosarcoma based on multiple machine learning.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Prognóstico , Modelos Estatísticos , Aprendizado de Máquina
4.
Hepatol Commun ; 6(11): 3083-3097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36017776

RESUMO

Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.


Assuntos
Cistos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Pró-Proteína Convertases/genética , Mutação de Sentido Incorreto/genética , Tunicamicina , Actinas/genética , Modelos Animais de Doenças , Fígado/patologia , Cistos/genética , Serina-Treonina Quinases TOR/genética , Mamíferos
5.
Front Microbiol ; 12: 753823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733263

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the influence of mutations in the SARS-CoV-2 gene on clinical outcomes is critical for treatment and prevention. Here, we analyzed all high-coverage complete SARS-CoV-2 sequences from GISAID database from January 1, 2020, to January 1, 2021, to mine the mutation hotspots associated with clinical outcome and developed a model to predict the clinical outcome in different epidemic strains. Exploring the cause of mutation based on RNA-dependent RNA polymerase (RdRp) and RNA-editing enzyme, mutation was more likely to occur in severe and mild cases than in asymptomatic cases, especially A > G, C > T, and G > A mutations. The mutations associated with asymptomatic outcome were mainly in open reading frame 1ab (ORF1ab) and N genes; especially R6997P and V30L mutations occurred together and were correlated with asymptomatic outcome with high prevalence. D614G, Q57H, and S194L mutations were correlated with mild and severe outcome with high prevalence. Interestingly, the single-nucleotide variant (SNV) frequency was higher with high percentage of nt14408 mutation in RdRp in severe cases. The expression of ADAR and APOBEC was associated with clinical outcome. The model has shown that the asymptomatic percentage has increased over time, while there is high symptomatic percentage in Alpha, Beta, and Gamma. These findings suggest that mutation in the SARS-CoV-2 genome may have a direct association with clinical outcomes and pandemic. Our result and model are helpful to predict the prevalence of epidemic strains and to further study the mechanism of mutation causing severe disease.

6.
Gastroenterology ; 161(1): 287-300.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771553

RESUMO

BACKGROUND & AIMS: The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD: Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS: In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS: Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ductos Biliares Intra-Hepáticos/patologia , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Estudos de Casos e Controles , Colestase Intra-Hepática/metabolismo , Doença Crônica , Feminino , Edição de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
7.
Front Immunol ; 10: 2840, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867007

RESUMO

Hepatic macrophages are key components of the liver immunity and consist of two main populations. Liver resident macrophages, known as Kupffer cells in mammals, are crucial for maintaining normal liver homeostasis. Upon injury, they become activated to release proinflammatory cytokines and chemokines and recruit a large population of inflammatory monocyte-derived macrophages to the liver. During the progression of liver diseases, macrophages are highly plastic and have opposing functions depending on the signaling cues that they receive from the microenvironment. A comprehensive understanding of liver macrophages is essential for developing therapeutic interventions that target these cells in acute and chronic liver diseases. Mouse studies have provided the bulk of our current knowledge of liver macrophages. The emergence of various liver disease models and availability of transgenic tools to visualize and manipulate macrophages have made the teleost zebrafish (Danio rerio) an attractive new vertebrate model to study liver macrophages. In this review, we summarize the origin and behaviors of macrophages in healthy and injured livers in zebrafish. We highlight the roles of macrophages in zebrafish models of alcoholic and non-alcoholic liver diseases, hepatocellular carcinoma, and liver regeneration, and how they compare with the roles that have been described in mammals. We also discuss the advantages and challenges of using zebrafish to study liver macrophages.


Assuntos
Modelos Animais de Doenças , Hepatopatias/imunologia , Macrófagos/fisiologia , Animais , Hematopoese , Hepatopatias Alcoólicas/imunologia , Neoplasias Hepáticas/imunologia , Regeneração Hepática , Peixe-Zebra
8.
Methods Mol Biol ; 1981: 273-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016661

RESUMO

Cholestasis is a condition that impairs bile flow, resulting in retention of bile fluid in the liver. It may cause significant morbidity and mortality due to pruritus, malnutrition, and complications from portal hypertension secondary to biliary cirrhosis. The zebrafish (Danio rerio) has emerged as a valuable model organism for studying cholestasis that complements with the in vitro systems and rodent models. Its main advantages include conserved mechanisms of liver development and bile formation, rapid external development, ease of monitoring hepatobiliary morphology and function in live larvae, and accessibility to genetic and chemical manipulations. In this chapter, we provide an overview of the existing zebrafish models of cholestatic liver diseases. We discuss the strengths and limitations of using zebrafish to study cholestasis. We also provide step-by-step descriptions of the methodologies for analyzing cholestatic phenotypes in zebrafish.


Assuntos
Colestase/patologia , Modelos Animais de Doenças , Hepatopatias/patologia , Peixe-Zebra , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Colestase/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo
9.
Hepatology ; 70(6): 2107-2122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31016744

RESUMO

The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/fisiologia , Cirrose Hepática/etiologia , Manose-6-Fosfato Isomerase/fisiologia , Manose/farmacologia , Animais , Células Cultivadas , Glicosilação , Humanos , Masculino , Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
10.
Sci Rep ; 9(1): 5807, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967584

RESUMO

In this paper, a double hollow spherical shell composite modified with layered double hydroxide (C@Ni-Al LDH HSS) was fabricated for uranium(VI) (U(VI)) adsorption. Various batch experiments were carried out to investigate the influence of pH, concentration, time and coexistence ion on extraction. The results showed that the adsorption processes of U(VI) onto C@Ni-Al LDH HSS were spontaneous and endothermic and closely followed pseudo-second-order and Langmuir isotherm models. The equilibrium time and maximum adsorption capacity of C@Ni-Al LDH HSS was 360 min and 545.9 mg g-1. FT-IR and XPS analyses proved that the adsorption behavior was primarily attributed to the strong interaction between oxygen-containing functional groups and U(VI). Moreover, the extraction of trace U(VI) (µg L-1) in artificial and natural seawater was also studied. The results showed that C@Ni-Al LDH HSS provided a promising application for the efficient extraction of U(VI) from seawater.

11.
Nat Commun ; 9(1): 1319, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615614

RESUMO

Anteroposterior (AP) axis extension during gastrulation requires embryonic patterning and morphogenesis to be spatiotemporally coordinated, but the underlying genetic mechanisms remain poorly understood. Here we define a role for the conserved chromatin factor Gon4l, encoded by ugly duckling (udu), in coordinating tissue patterning and axis extension during zebrafish gastrulation through direct positive and negative regulation of gene expression. Although identified as a recessive enhancer of impaired axis extension in planar cell polarity (PCP) mutants, udu functions in a genetically independent, partially overlapping fashion with PCP signaling to regulate mediolateral cell polarity underlying axis extension in part by promoting notochord boundary formation. Gon4l limits expression of the cell-cell and cell-matrix adhesion molecules EpCAM and Integrinα3b, excesses of which perturb the notochord boundary via tension-dependent and -independent mechanisms, respectively. By promoting formation of this AP-aligned boundary and associated cell polarity, Gon4l cooperates with PCP signaling to coordinate morphogenesis along the AP embryonic axis.


Assuntos
Fatores de Ligação de DNA Eritroide Específicos/genética , Fatores de Ligação de DNA Eritroide Específicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Padronização Corporal , Adesão Celular , Comunicação Celular , Cromatina/química , Cruzamentos Genéticos , Glicoproteínas de Membrana/fisiologia , Mutação , Notocorda/fisiologia , Análise de Sequência de RNA , Transdução de Sinais , Xenopus , Peixe-Zebra
12.
Hepatology ; 67(4): 1531-1545, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29091294

RESUMO

Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS: Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Colestase Intra-Hepática/genética , Hepatócitos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Autofagia/genética , Colestase Intra-Hepática/patologia , Feminino , Humanos , Imunossupressores/farmacologia , Lactente , Fígado/patologia , Masculino , Mutação , Sirolimo/farmacologia , Peixe-Zebra/metabolismo
13.
Curr Pathobiol Rep ; 5(2): 207-221, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29098121

RESUMO

PURPOSE OF REVIEW: The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. RECENT FINDINGS: The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. SUMMARY: In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.

14.
J Vis Exp ; (123)2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28570521

RESUMO

Alcoholic Liver Disease (ALD) refers to damage to the liver due to acute or chronic alcohol abuse. It is among the leading causes of alcohol-related morbidity and mortality and affects more than 2 million people in the United States. A better understanding of the cellular and molecular mechanisms underlying alcohol-induced liver injury is crucial for developing effective treatment for ALD. Zebrafish larvae exhibit hepatic steatosis and fibrogenesis after just 24 h of exposure to 2% ethanol, making them useful for the study of acute alcoholic liver injury. This work describes the procedure for acute ethanol treatment in zebrafish larvae and shows that it causes steatosis and swelling of the hepatic blood vessels. A detailed protocol for Hematoxylin and Eosin (H&E) staining that is optimized for the histological analysis of the zebrafish larval liver, is also described. H&E staining has several unique advantages over immunofluorescence, as it marks all liver cells and extracellular components simultaneously and can readily detect hepatic injury, such as steatosis and fibrosis. Given the increasing usage of zebrafish in modeling toxin and virus-induced liver injury, as well as inherited liver diseases, this protocol serves as a reference for the histological analyses performed in all these studies.


Assuntos
Fígado Gorduroso Alcoólico/patologia , Fígado/patologia , Animais , Vasos Sanguíneos/patologia , Corantes , Amarelo de Eosina-(YS) , Etanol/toxicidade , Fígado Gorduroso Alcoólico/veterinária , Fibrose , Hematoxilina , Técnicas Histológicas , Larva , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Peixe-Zebra
15.
Cell Mol Gastroenterol Hepatol ; 3(3): 484-499, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462385

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. METHODS: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. RESULTS: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC) density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgf)b1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. CONCLUSIONS: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males.

16.
Semin Cell Dev Biol ; 63: 68-78, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27552918

RESUMO

The liver and pancreas are the prime digestive and metabolic organs in the body. After emerging from the neighboring domains of the foregut endoderm, they turn on distinct differentiation and morphogenesis programs that are regulated by hierarchies of transcription factors. Members of SOX family of transcription factors are expressed in the liver and pancreas throughout development and act upstream of other organ-specific transcription factors. They play key roles in maintaining stem cells and progenitors. They are also master regulators of cell fate determination and tissue morphogenesis. In this review, we summarize the current understanding of SOX transcription factors in mediating liver and pancreas development. We discuss their contribution to adult organ function, homeostasis and injury responses. We also speculate how the knowledge of SOX transcription factors can be applied to improve therapies for liver diseases and diabetes.


Assuntos
Ductos Biliares/embriologia , Fígado/embriologia , Pâncreas/embriologia , Fatores de Transcrição SOX/metabolismo , Animais , Homeostase , Humanos , Modelos Biológicos
17.
Dis Model Mech ; 9(11): 1383-1396, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562099

RESUMO

Alcoholic liver disease (ALD) results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF) and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the zebrafish model to identify molecular targets for developing ALD therapies.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Regeneração Hepática , Fígado/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Etanol , Proteínas da Matriz Extracelular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Larva/metabolismo , Ligantes , Hepatopatias Alcoólicas/genética , Regeneração Hepática/efeitos dos fármacos , Mutação/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética
18.
Dis Model Mech ; 6(5): 1213-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798569

RESUMO

Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 µmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes.


Assuntos
Etanol/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Hepatopatias Alcoólicas/complicações , Estresse Oxidativo , Resposta a Proteínas não Dobradas , Peixe-Zebra/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Antioxidantes/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/toxicidade , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Larva/efeitos dos fármacos , Larva/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Via Secretória/efeitos dos fármacos , Análise de Sobrevida , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
Development ; 140(13): 2734-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23757411

RESUMO

Visceral organs, including the liver and pancreas, adopt asymmetric positions to ensure proper function. Yet the molecular and cellular mechanisms controlling organ laterality are not well understood. We identified a mutation affecting zebrafish laminin ß1a (lamb1a) that disrupts left-right asymmetry of the liver and pancreas. In these mutants, the liver spans the midline and the ventral pancreatic bud remains split into bilateral structures. We show that lamb1a regulates asymmetric left-right gene expression in the lateral plate mesoderm (LPM). In particular, lamb1a functions in Kupffer's vesicle (KV), a ciliated organ analogous to the mouse node, to control the length and function of the KV cilia. Later during gut-looping stages, dynamic expression of Lamb1a is required for the bilayered organization and asymmetric migration of the LPM. Loss of Lamb1a function also results in aberrant protrusion of LPM cells into the gut. Collectively, our results provide cellular and molecular mechanisms by which extracellular matrix proteins regulate left-right organ morphogenesis.


Assuntos
Laminina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cílios/metabolismo , Lateralidade Funcional/genética , Lateralidade Funcional/fisiologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Laminina/genética , Organogênese/genética , Organogênese/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
20.
J Clin Invest ; 123(5): 1902-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635788

RESUMO

Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases.


Assuntos
Células Estreladas do Fígado/citologia , Neoplasias Hepáticas/metabolismo , Regeneração Hepática , Fígado/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular , Células Endoteliais/citologia , Fibrose/metabolismo , Humanos , Fígado/embriologia , Fígado/patologia , Fígado/fisiopatologia , Hepatopatias/metabolismo , Falência Hepática Aguda/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Microscopia de Contraste de Fase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...