Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 951463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172578

RESUMO

Accumulating evidence indicates that long non-coding RNAs (lncRNAs) contribute to myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanisms by which lncRNAs modulate myocardial I/R injury have not been thoroughly examined and require further investigation. A novel lncRNA named lncRNA-hypoxia/reoxygenation (H/R)-associated transcript (lncRNA-HRAT) was identified by RNA sequencing analysis. The expression of lncRNA-HRAT exhibited a significant increase in the I/R mice hearts and cardiomyocytes treated with H/R. LncRNA-HRAT overexpression facilitates H/R-induced cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific deficiency of lncRNA-HRAT in vivo after I/R decreased creatine kinase (CK) release in the serum, reduced myocardial infarct area, and improved cardiac dysfunction. Molecular mechanistic investigations revealed that lncRNA-HRAT serves as a competing endogenous RNA (ceRNA) of miR-370-3p, thus upregulating the expression of ring finger protein 41 (RNF41), thereby aggravating apoptosis in cardiomyocytes induced by H/R. This study revealed that the lncRNA-HRAT/miR-370-3p/RNF41 pathway regulates cardiomyocyte apoptosis and myocardial injury. These findings suggest that targeted inhibition of lncRNA-HRAT may offer a novel therapeutic method to prevent myocardial I/R injury.

2.
Front Immunol ; 13: 923194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935940

RESUMO

Ovarian cancer is the most common and lethal gynecological tumor in women worldwide. High-grade serous ovarian carcinoma (HGSOC) is one of the histological subtypes of epithelial ovarian cancer, accounting for 70%. It often occurs at later stages associated with a more fatal prognosis than endometrioid carcinomas (EC), another subtype of epithelial ovarian cancer. However, the molecular mechanism and biology underlying the metastatic HGSOC (HG_M) immunophenotype remain poorly elusive. Here, we performed single-cell RNA sequencing analyses of primary HGSOC (HG_P) samples, metastatic HGSOC (HG_M) samples, and endometrioid carcinomas (EC) samples. We found that ERBB2 and HOXB-AS3 genes were more amplified in metastasis tumors than in primary tumors. Notably, high-grade serous ovarian cancer metastases are accompanied by dysregulation of multiple pathways. Malignant cells with features of epithelial-mesenchymal transition (EMT) affiliated with poor overall survival were identified. In addition, cancer-associated fibroblasts with EMT-program were enriched in HG_M, participating in angiogenesis and immune regulation, such as IL6/STAT3 pathway activity. Compared with ECs, HGSOCs exhibited higher T cell infiltration. PRDM1 regulators may be involved in T cell exhaustion in ovarian cancer. The CX3CR1_macro subpopulation may play a role in promoting tumor progression in ovarian cancer with high expression of BAG3, IL1B, and VEGFA. The new targets we discovered in this study will be useful in the future, providing guidance on the treatment of ovarian cancer.


Assuntos
Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Endometrioide/metabolismo , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , RNA , Microambiente Tumoral/genética
3.
Anal Methods ; 13(42): 5011-5016, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34635885

RESUMO

More than 200 million people in the world are exposed to areas where the arsenic concentration exceeds the limit allowed for living species, which urges researchers to develop low-cost methods for the selective and fast detection of arsenic ions in environmental samples. Herein, we report a novel tetraphenylimidazole-based probe (TBAB) functionalized with a Schiff base for sensing and detecting arsenic ions in aqueous media. Upon the addition of arsenic ions, an obvious fluorescence change from faint yellow to green was observed visible to the naked eye. The probe can detect arsenic selectively in the presence of interfering substances, with a lower detection limit than 0.7 ppb, a value which is far lower than the limit set by the WHO. A detailed mechanism revealed that the chelation of TBAB with arsenic activated the AIE characteristic, leading to the enhanced fluorescence, which was verified by Job's plot experiment and HRMS. Its practicality was further validated by the analysis of real water samples, demonstrating its potential application for on-site detection and biological application.


Assuntos
Arsenitos , Corantes Fluorescentes , Humanos , Íons , Bases de Schiff , Espectrometria de Fluorescência/métodos
4.
Biochem Biophys Res Commun ; 530(1): 314-321, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828305

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a clinically fatal disease, caused by restoring myocardial blood supply after a period of ischemia or hypoxia. However, the underlying mechanism remains unclear. Recently, increasing evidence reveal that microRNAs (miRs) participate in myocardial I/R injury. This study aimed to investigate whether miR-128-1-5p contributed to cardiomyocyte apoptosis induced by myocardial I/R injury. Here, we showed that the expression of miR-128-1-5p was decreased in mice following myocardial I/R injury. Down-regulation of miR-128-1-5p was also showed in H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R), and in neonatal rat cardiomyocytes (NRCMs) with H2O2 treatment. Importantly, we found that overexpression of miR-128-1-5p ameliorates cardiomyocyte apoptosis both in H9c2 cardiomyocytes and NRCMs. Moreover, we also found that growth arrest DNA damage-inducible gene 45 gamma (Gadd45g) is identified as a direct target of miR-128-1-5p, which negatively regulated Gadd45g expression. Additionally, silencing of Gadd45g inhibits cardiomyocyte apoptosis in H9c2 cardiomyocytes and NRCMs. These results reveal a novel mechanism by which miR-128-1-5p regulates Gadd45g-mediated cardiomyocyte apoptosis in myocardial I/R injury.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais , Regulação para Cima , Proteínas GADD45
5.
Eur J Immunol ; 50(12): 2095-2098, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32697355

RESUMO

In CTLs: High glucose-culture enhances thapsigargin-induced SOCE but decreases target recognition-induced Ca2+ influx. High glucose-culture regulates expression of ORAIs and STIMs without affecting glucose uptake. More high glucose-cultured CTLs are prone to necrosis after execution of killing.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Linfócitos T Citotóxicos/metabolismo , Tapsigargina/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos
6.
Cell Biosci ; 10: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123560

RESUMO

BACKGROUND: Cardiovascular diseases are currently the leading cause of death in humans. The high mortality of cardiac diseases is associated with myocardial ischemia and reperfusion (I/R). Recent studies have reported that microRNAs (miRNAs) play important roles in cell apoptosis. However, it is not known yet whether miR-141-3p contributes to the regulation of cardiomyocyte apoptosis. It has been well established that in vitro hypoxia/reoxygenation (H/R) model can follow in vivo myocardial I/R injury. This study aimed to investigate the effects of miR-141-3p and CHD8 on cardiomyocyte apoptosis following H/R. RESULTS: We found that H/R remarkably reduces the expression of miR-141-3p but enhances CHD8 expression both in mRNA and protein in H9c2 cardiomyocytes. We also found either overexpression of miR-141-3p by transfection of miR-141-3p mimics or inhibition of CHD8 by transfection of small interfering RNA (siRNA) significantly decrease cardiomyocyte apoptosis induced by H/R. Moreover, miR-141-3p interacts with CHD8. Furthermore, miR-141-3p and CHD8 reduce the expression of p21. CONCLUSION: MiR-141-3p and CHD8 play critical roles in cardiomyocyte apoptosis induced by H/R. These studies suggest that miR-141-3p and CHD8 mediated cardiomyocyte apoptosis may offer a novel therapeutic strategy against myocardial I/R injury-induced cardiovascular diseases.

8.
Life Sci ; 242: 117186, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862454

RESUMO

AIMS: This study was aimed to investigate the role of GSDME-mediated pyroptosis in cardiac injury induced by Doxorubicin (DOX), and to evaluate the role of BH3-only protein Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) in regulation of DOX-induced pyroptosis. MAIN METHODS: HL-1 cardiomyocytes and C57BL/6J mice were treated by DOX to establish DOX-induced cardiotoxicity in vitro and in vivo models, respectively. Cell transfection was applied to regulate the expression of caspase-3, GSDME and Bnip3. Western blot was used for measuring expression of protein level. LDH-cytotoxicity assay was used to detect the LDH release. The Flow cytometry analysis was used to detect the cell death. Echocardiography was used to determine the cardiac function. HE staining was used for observing pathological feature of heart tissues. KEY FINDINGS: Our results showed that GSDME-mediated pyroptosis was involved in DOX-induced cardiotoxicity in vivo. We showed that HL-1 cardiomyocytes exposed to DOX exhibited morphological features of pyroptosis in vitro. We also showed that DOX induced activation of caspase-3 and eventually triggered GSDME-dependent pyroptosis, which was reduced by the silence or inhibitor of caspase-3. We further showed that knockdown of GSDME inhibited DOX-induced cardiomyocyte pyroptosis in vitro. Finally, DOX increased the expression of Bnip3, whereas silencing of Bnip3 blunted cardiomyocyte pyroptosis induced by DOX, which was regulated through caspase-3 activation and GSDME cleavage. SIGNIFICANCE: Our findings revealed a novel pathway that cardiomyocyte pyroptosis is regulated through Bnip3-caspase-3-GSDME pathway following DOX treatment, suggesting that Bnip3-dependent pyroptosis may offer a novel therapeutic strategy to reduce cardiotoxicity induced by DOX.


Assuntos
Caspase 3/metabolismo , Doxorrubicina/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Animais , Western Blotting , Ecocardiografia , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Cell Biosci ; 9: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680089

RESUMO

BACKGROUND: Psychological and physical stress can either enhance or suppress immune functions depending on a variety of factors such as duration and severity of stressful situation. Chronic stress exerts a significantly suppressive effect on immune functions. However, the mechanisms responsible for this phenomenon remain to be elucidated. Autophagy plays an essential role in modulating cellular homeostasis and immune responses. However, it is not known yet whether autophagy contributes to chronic stress-induced immunosuppression. T cell immunoglobulin and mucin domain 3 (Tim-3) has shown immune-suppressive effects and obviously positive regulation on cell apoptosis. Tim-3 combines with Tim-3 ligand galectin-9 to modulate apoptosis. However, its impact on autophagy and chronic stress-induced immunosuppression is not yet identified. RESULTS: We found remarkably higher autophagy level in the spleens of mice that were subjected to chronic restraint stress compared with the control group. We also found that inhibition of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated chronic stress-induced alterations of pro-inflammatory and anti-inflammatory cytokine levels. We further elucidated that 3-MA dramatically inhibited the reduction of lymphocyte numbers. Moreover, chronic stress dramatically enhanced the expression of Tim-3 and galectin-9. Inhibition of Tim-3 by small interfering RNA against Tim-3 significantly decreased the level of autophagy and immune suppression in isolated primary splenocytes from stressed mice. In addition, α-lactose, a blocker for the interaction of Tim-3 and galectin-9, also decreased the autophagy level and immune suppression. CONCLUSION: Chronic stress induces autophagy, resulting with suppression of immune system. Tim-3 and galectin-9 play a crucial regulatory role in chronic stress-induced autophagy. These studies suggest that Tim-3 mediated autophagy may offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.

10.
Biomed Pharmacother ; 103: 869-878, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29710503

RESUMO

Cardiovascular dysfunction is a major complication associated with sepsis induced mortality. Cardiac fibrosis plays a critical role in sepsis induced cardiac dysfunction. The mechanisms of the activation of cardiac fibrosis is unclarified. In this study, we found that microRNA-23b (miR-23b) was up-regulated in heart tissue during cecal ligation and puncture (CLP)-induced sepsis and transfection of miR-23b inhibitor improved survival in late sepsis. Inhibition of miR-23b in the myocardium protected against cardiac output and enhanced left ventricular systolic function. miR-23b inhibitor also alleviated cardiac fibrosis in late sepsis. MiR-23b mediates the activation of TGF-ß1/Smad2/3 signaling to promote the differentiation of cardiac fibroblasts through suppression of 5'TG3'-interacting factor 1 (TGIF1). MiR-23b also induces AKT/N-Cadherin signaling to contribute to the deposition of extracellular matrix by inhibiting phosphatase and tensin homologue (PTEN). TGIF1 and PTEN were confirmed as the targets of miR-23b in vitro by Dual-Glo Luciferase assay. miR-23b inhibitor blocked the activation of adhesive molecules and restored the imbalance of pro-fibrotic and anti-fibrotic factors. These data provide direct evidence that miR-23b is a critical contributor to the activation of cardiac fibrosis to mediate the development of myocardial dysfunction in late sepsis. Blockade of miR-23b expression may be an effective approach for prevention sepsis-induced cardiac dysfunction.


Assuntos
Coração/fisiopatologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Miocárdio/patologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Repressoras/metabolismo , Sepse/genética , Animais , Fibrose , Células HEK293 , Testes de Função Cardíaca , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Sepse/patologia , Análise de Sobrevida
11.
Cell Death Discov ; 4: 27, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29531824

RESUMO

Myocardial infarction (MI), characterized by ischemia-induced cardiomyocyte apoptosis, is the leading cause of mortality worldwide. NR4A2, a member of the NR4A orphan nucleus receptor family, is upregulated in mouse hearts with MI injury. Furthermore, NR4A2 knockdown aggravates heart injury as evidenced by enlarged hearts and increased apoptosis. To elucidate the underlying mechanisms of NR4A2-regulated apoptosis, we used H9c2 cardiomyocytes deprived of serum and neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia to mimic ischemic conditions in vivo. As NR4A2 knockdown aggravates cardiomyocyte apoptosis, while NR4A2 overexpression ameliorates it, NR4A2 upregulation was considered an adaptive response to ischemia-induced cardiomyocyte apoptosis. By detecting changes in LC3 and using autophagy detection tools including Bafilomycin A1, 3MA and rapamycin, we found that NR4A2 knockdown promoted apoptosis through blocking autophagic flux. This apoptotic response was phenocopied by downregulation of NR4A2 after autophagic flux was impaired by Bafilomycin A1. Further study showed that NR4A2 binds to p53 directly and decreases its levels when it inhibits apoptosis; thus, p53/Bax is the downstream effector of NR4A2-mediated apoptosis, as previously reported. Changes in p53/Bax that were regulated by NR4A2 were also detected in injured hearts with NR4A2 knockdown. In addition, miR-212-3p is the upstream regulator of NR4A2, and it could downregulate the expression of NR4A2, as well as p53/Bax. The mechanism underlying the role of NR4A2 in apoptosis and autophagy was elucidated, and NR4A2 may be a therapeutic drug target for heart failure.

12.
J Infect Dis ; 218(2): 300-311, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29506272

RESUMO

Background: microRNA-23b (miR-23b) is a multiple functional miRNA. We hypothesize that miR-23b plays a role in the pathogenesis of sepsis. Our study investigated the effect of miR-23b on sepsis-induced immunosuppression. Methods: Mice were treated with miR-23b inhibitors by tail vein injection 2 days after cecal ligation puncture (CLP)-induced sepsis. Apoptosis in spleens and apoptotic signals were investigated, and survival was monitored. T-cell immunoreactivities were examined during late sepsis. Nuclear factor κB (NF-κB)-inducing kinase (NIK), tumor necrosis factor (TNF)-receptor associated factor 1 (TRAF1), and X-linked inhibitor of apoptosis protein (XIAP), the putative targets of miR-23b, were identified by a dual-luciferase reporter assay. Results: miR-23b expression is upregulated and sustained during sepsis. The activation of the TLR4/TLR9/p38 MAPK/STAT3 signal pathway contributes to the production of miR-23b in CLP-induced sepsis. miR-23b inhibitor decreased the number of spleen cells positive by terminal deoxynucleotidyl transferase dUTP nick-end labeling and improved survival. miR-23b inhibitor restored the immunoreactivity by alleviating the development of T-cell exhaustion and producing smaller amounts of immunosuppressive interleukin 10 and interleukin 4 during late sepsis. We demonstrated that miR-23b mediated immunosuppression during late sepsis by inhibiting the noncanonical NF-κB signal and promoting the proapoptotic signal pathway by targeting NIK, TRAF1, and XIAP. Conclusions: Inhibition of miR-23b reduces late-sepsis-induced immunosuppression and improves survival. miR-23b might be a target for immunosuppression.


Assuntos
Tolerância Imunológica , Proteínas Inibidoras de Apoptose/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sepse/patologia , Fator 1 Associado a Receptor de TNF/metabolismo , Animais , Apoptose , Fusão Gênica Artificial , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Reporter , Proteínas Inibidoras de Apoptose/análise , Luciferases/análise , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/análise , Baço/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Fator 1 Associado a Receptor de TNF/análise , Quinase Induzida por NF-kappaB
13.
J Neuroimmunol ; 314: 30-41, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29169800

RESUMO

Depending on the duration and severity, psychological tension and physical stress can enhance or suppress the immune system in both humans and animals. Although it has been established that chronic stress exerts a significant suppressive effect on immune function, the mechanisms by which affects immune responses remain elusive. By employing an in vivo murine system, we revealed that TGF-ß1/Smad2/3/Foxp3 axis was remarkably activated following chronic stress. Furthermore, TLR9 and p38 MAPK played a critical role in the activation of TGF-ß1/Smad2/3/Foxp3 signaling cascade. Moreover, inhibition of TGF-ß1/Smad2/3/Foxp3 or p38 significantly attenuated chronic stress-induced lymphocyte apoptosis and apoptosis-related proteins, as well as the differentiation of T regulatory cells in spleen. Interestingly, disequilibrium of pro-inflammatory and anti-inflammatory cytokines balance caused by chronic stress was also rescued by blocking TGF-ß1/Smad2/3/Foxp3 axis. These findings yield insight into a novel mechanism by which chronic stress modulates immune functions and identifies new targets for the development of novel anti-immune suppressant medications.


Assuntos
Tolerância Imunológica/imunologia , Transdução de Sinais/imunologia , Estresse Psicológico/imunologia , Animais , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Smad2/imunologia , Proteína Smad2/metabolismo , Proteína Smad3/imunologia , Proteína Smad3/metabolismo , Estresse Psicológico/metabolismo , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
14.
Oncotarget ; 8(44): 77634-77648, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100414

RESUMO

Cardiac stem cells (CSCs)-based therapy provides a promising avenue for the management of ischemic heart diseases. However, engrafted CSCs are subjected to acute cell apoptosis in the ischemic microenvironment. Here, stem cell antigen 1 positive (Sca-1+) CSCs proved to own therapy potential were cultured and treated with H2O2 to mimic the ischemia situation. As autophagy inhibitor, 3-methyladenine (3MA), inhibited H2O2-induced CSCs apoptosis, thus we demonstrated that H2O2 induced autophagy-dependent apoptosis in CSCs, and continued to find key proteins responsible for the crosstalk between autophagy and apoptosis. Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2), increased upon cardiomyocyte injury with unknown functions in CSCs, was increased by H2O2. NR4A2 siRNA attenuated H2O2 induced autophagy and apoptosis in CSCs, which suggested an important role of NR4A2 in CSCs survival in ischemia conditions. Reactive oxygen species (ROS) and NF-κB (P65) subunit were both increased by H2O2. Either the ROS scavenger, N-acetyl-l-cysteine (NAC) or NF-κB signaling inhibitor, bay11-7082 could attenuate H2O2-induced autophagy and apoptosis in CSCs, which suggested they were involved in this process. Furthermore, NAC inhibited NF-κB activities, while bay11-7082 inhibited NR4A2 expression, which revealed a ROS/NF-κB/NR4A2 pathway responsible for H2O2-induced autophagy and apoptosis in CSCs. Our study supports a new clue enhancing the survival rate of CSCs in the infarcted myocardium for cell therapy in ischemic cardiomyopathy.

15.
Cell Biosci ; 7: 48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021891

RESUMO

It is well known that too much sugar uptake causes many health problems, including diabetes and obesity (Lustig et al. in Nature 482:27-29, 2012). However, a team of researchers led by Dr. Wanjun Chen of the National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), USA, have recently shown that d-mannose, a naturally occurring C-2 epimer of glucose is likely beneficial to human health. Their studies have revealed that supraphysiological levels of d-mannose that are safely achievable via drinking-water supplementation can be preventive and therapeutic to experimental autoimmune diabetes and asthmatic lung inflammation (Zhang et al. in Nat Med 23:1036-1045, 2017).

16.
J Neuroimmunol ; 309: 72-76, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28601292

RESUMO

Physical or psychological chronic stress can suppress the immune system. However, the mechanisms remain to be elucidated. We investigated the effect of hematopoietic stem-progenitor cells (HSPCs) on chronic stress-induced the alterations of immune responses. We demonstrate that HSPCs prevents stress-induced lymphocyte apoptosis. Moreover, we also demonstrate that the protective effect of HSPCs on stress-induced lymphocyte reduction exerts by steroid hormones. Furthermore, we reveal that chronic stress-induced T cell-mediated immune responses contributes to the protective effect of HSPCs. These results indicate that HPSCs might offer a novel therapeutic strategy against the deleterious effects of chronic stress on the immune system.


Assuntos
Apoptose/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Linfócitos/fisiologia , Estresse Psicológico/imunologia , Estresse Psicológico/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Psicológico/psicologia
17.
Biochim Biophys Acta Mol Cell Res ; 1864(8): 1425-1434, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28522298

RESUMO

Cardiac stem cells (CSCs) have emerged as promising cell candidates to regenerate damaged hearts, because of the potential in differentiating to cardiomyocytes. However, the differentiation is difficult to trigger without inducers. Here we reported that ß-cyclodextrin (ß-CD) increased the expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T, cTnt), transcriptional enhancer (Mef2c) and induced GATA4 nucleus translocation in adult resident CSCs, thus ß-CD could be used to enhance myogenic transition. As the differentiation process was accompanied by autophagy, we constructed the Atg5 knockdown cell line by using the Atg5 siRNA lentivirus, and the myogenic conversion was blocked in Atg5 knockdown cells, which suggested that ß-CD induces the cardiomyocytes transition of resident CSCs through autophagy. Furthermore, we found that JNK/STAT3 and GSK3ß/ß-catenin was the downstream pathways of ß-CD-induced autophagy and differentiation using the inhibitors. Moreover, ß-CD performed its functions through improving intracellular cholesterol levels and affecting cholesterol efflux. Collectively, our results reveal that ß-CD as a novel tool to induce myogenic transition of CSCs, which could mobilize the resident CSCs or used together with CSCs to enhance the therapy effects of CSCs on damaged hearts. In addition, the clarified molecular mechanisms supported the new targets for inducing cardiomyocyte differentiation.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Autofagia/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Troponina T/genética , Troponina T/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Oncotarget ; 8(29): 47317-47329, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525390

RESUMO

Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of ß-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.


Assuntos
Cardiopatias/etiologia , Cardiopatias/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MicroRNAs/genética , Sepse/complicações , beta-Arrestina 2/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Cardiopatias/mortalidade , Cardiopatias/fisiopatologia , Testes de Função Cardíaca , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Miocárdio/metabolismo , Neutrófilos/metabolismo , Interferência de RNA , Sepse/etiologia , Transdução de Sinais , Taxa de Sobrevida , Transfecção
19.
Biochem Biophys Rep ; 7: 130-137, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27957549

RESUMO

Sepsis is an exaggerated systemic inflammatory response to persistent bacteria infection with high morbidity and mortality rate clinically. ß-arrestin 2 modulates cell survival and cell death in different systems. However, the effect of ß-arrestin 2 on sepsis-induced cardiac dysfunction is not yet known. Here, we show that ß-arrestin 2 overexpression significantly enhances animal survival following cecal ligation and puncture (CLP)-induced sepsis. Importantly, overexpression of ß-arrestin 2 in mice prevents CLP-induced cardiac dysfunction. Also, ß-arrestin 2 overexpression dramatically attenuates CLP-induced myocardial gp130 and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following CLP. Therefore, ß-arrestin 2 prevents CLP-induced cardiac dysfunction through gp130 and p38. These results suggest that modulation of ß-arrestin 2 might provide a novel therapeutic approach to prevent cardiac dysfunction in patients with sepsis.

20.
Apoptosis ; 21(9): 1045-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27431999

RESUMO

Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3ß is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3ß phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3ß by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3ß plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and ß-arrestin 2 (ß-Arr2). Here, we report that GSK-3ß regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of ß-Arr2. PA diminishes the protein level of ß-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of ß-Arr2 by its siRNA or overexpression of its protein level by transfection of ß-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. ß-Arr2 siRNA decreased the background level of ß-Arr2 in nucleus in normal H9c2 cells. Overexpression of ß-Arr2 increased cytoplasm level of ß-Arr2 as PA did. While LiCl, the inhibitor of GSK-3ß decreased PA-induced apoptosis, accompany with increased nucleus level of ß-Arr2. Then we concluded that GSK-3ß is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of ß-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.


Assuntos
Apoptose , Núcleo Celular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Miócitos Cardíacos/metabolismo , Ácido Palmítico/metabolismo , beta-Arrestina 2/metabolismo , Animais , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Miócitos Cardíacos/citologia , Fosforilação , Transporte Proteico , Ratos , beta-Arrestina 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...