Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810917

RESUMO

Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.


Assuntos
Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Acetilação , Ratos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibrose/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Acetiltransferases N-Terminal
2.
Iran J Basic Med Sci ; 27(1): 107-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164488

RESUMO

Objectives: To investigate the effects and mechanisms of ivabradine (IVA) on isoprenaline-induced cardiac injury. Materials and Methods: Forty male C57BL/6 mice were randomly divided into control group, model group, high-dose IVA group, and low-dose IVA group. The control group was given saline, other groups were given subcutaneous injections of isoproterenol (ISO) 5 mg/kg/d to make the myocardial remodeling model. A corresponding dose of IVA (high dose 50 mg/kg/d, low dose 10 mg/kg/d) was given by gavage (30 days). A transthoracic echocardiogram was obtained to detect the structure and function of the heart. An electron microscope was used to explore the cardiomyocytes' apoptosis and autophagy. HE staining and Masson's trichrome staining were performed to explore myocardial hypertrophy and fibrosis. Western blot was used to detect Bax, Bcl-2, cleaved caspase-3, Becline-1, LC3, phosphorylated p38 mitogen-activated protein kinase (p-p38MAPK), phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2), phosphorylated c-Jun N-terminal kinase (p-JNK), and α-smooth muscle actin (α-SMA) in the myocardium. Results: Heart rate in the IVA groups was reduced, and the trend of heart rate reduction was more obvious in the high-dose group. Echocardiography showed that IVA improved the cardiac structure and function compared to the model group. IVA attenuated cardiac fibrosis, decreased cardiomyocyte apoptosis, and increased autophagy. The phosphorylated MAPK in the ISO-induced groups was increased. IVA treatment decreased the p-p38MAPK level. There were no differences in p-ERK and p-JNK levels. Conclusion: The beneficial effects of IVA on myocardial injury are related to blocking the p38MAPK signal pathway, decreasing cardiomyocyte apoptosis, and increasing cardiomyocyte autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...