Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(11): e80039, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244602

RESUMO

TFIIB (transcription factor IIB) is a transcription factor that provides a bridge between promoter-bound TFIID and RNA polymerase II, and it is a target of various transcriptional activator proteins that stimulate the pre-initiation complex assembly. The localization and/or attachment matrix of TFIIB in the cytoplast is not well understood. This study focuses on the function of TFIIB and its interrelationship with α-tubulins in a mouse model. During oocyte maturation TFIIB distributes throughout the entire nucleus of the germinal vesicle (GV). After progression to GV breakdown (GVBD), TFIIB and α-tubulin co-localize and accumulate in the vicinity of the condensed chromosomes. During the MII stage, the TFIIB signals are more concentrated at the equatorial plate and the kinetochores. Colcemid treatment of oocytes disrupts the microtubule (MT) system, although the TFIIB signals are still present with the altered MT state. Injection of oocytes with TFIIB antibodies and siRNAs causes abnormal spindle formation and irregular chromosome alignment. These findings suggest that TFIIB dissociates from the condensed chromatids and then tightly binds to microtubules from GVBD to the MII phase. The assembly and disassembly of TFIIB may very well be associated with and driven by microtubules. TFIIB maintains its contact with the α-tubulins and its co-localization forms a unique distribution pattern. Depletion of Tf2b in oocytes results in a significant decrease in TFIIB expression, although polar body extrusion does not appear to be affected. Knockdown of Tf2b dramatically affects subsequent embryo development with more than 85% of the embryos arrested at the 2-cell stage. These arrested embryos still maintain apparently normal morphology for at least 96h without any obvious degeneration. Analysis of the effects of TFIIB in somatic cells by co-transfection of BiFC plasmids pHA-Tf2b and pFlag-Tuba1α further confirms a direct interaction between TFIIB and α-tubulins.


Assuntos
Desenvolvimento Embrionário/genética , Meiose , Oócitos/metabolismo , Fator de Transcrição TFIIB/genética , Tubulina (Proteína)/genética , Animais , Anticorpos/farmacologia , Antineoplásicos/farmacologia , Cromátides/efeitos dos fármacos , Cromátides/metabolismo , Cromátides/ultraestrutura , Demecolcina/farmacologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Camundongos , Microinjeções , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Plasmídeos/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Fator de Transcrição TFIIB/antagonistas & inibidores , Fator de Transcrição TFIIB/metabolismo , Tubulina (Proteína)/metabolismo
2.
PLoS One ; 8(9): e73636, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019931

RESUMO

Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrômero , Cromátides , Desenvolvimento Embrionário/fisiologia , Meiose , Mitose , Animais , Sequência de Bases , Bovinos , Proteínas de Ciclo Celular/genética , Células Cultivadas , Primers do DNA , Microscopia de Fluorescência , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...