Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 45(5): 513-522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37936813

RESUMO

Compared with traditional genetic markers, genomic approaches have proved valuable to the conservation of endangered species. Paeonia ludlowii having rarely and pure yellow flowers, is one of the world's most famous tree peonies. However, only several wild populations remain in the Yarlung Zangbo Valley (Nyingchi and Shannan regions, Xizang) in China due to increasing anthropogenic impact on the natural habitats. We used genome-wide single nucleotide polymorphisms to elucidate the spatial pattern of genetic variation, population structure and demographic history of P. ludlowii from the fragmented region comprising the entire range of this species, aiming to provide a basis for conserving the genetic resources of this species. Unlike genetic uniformity among populations revealed in previous studies, we found low but varied levels of intra-population genetic diversity, in which lower genetic diversity was detected in the population in Shannan region compared to those in Nyingzhi region. These spatial patterns may be likely associated with different population sizes caused by micro-environment differences in these two regions. Additionally, low genetic differentiation among populations (Fst = 0.0037) were detected at the species level. This line of evidence, combined with the result of significant genetic differentiation between the two closest populations and lack of isolation by distance, suggested that shared ancestry among now remnant populations rather than contemporary genetic connectivity resulted in subtle population structure. Demographic inference suggested that P. ludlowii probably experienced a temporal history of sharp population decline during the period of Last Glacial Maximum, and a subsequent bottleneck event resulting from prehistoric human activities on the Qinghai-Tibet Plateau. All these events, together with current habitat fragment and excavation might contribute to the endangered status of P. ludlowii. Our study improved the genetic characterization of the endangered tree peony (P. ludlowii) in China, and these genetic inferences should be considered when making different in situ and ex situ conservation actions for P. ludlowii in this evolutionary hotspot region.

2.
BMC Plant Biol ; 23(1): 303, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280518

RESUMO

BACKGROUND: Ceratostigma, a genus in the Plumbaginaceae, is an ecologically dominant group of shrubs, subshrub and herb mainly distributed in Qinghai-Tibet Plateau and North China. Ceratostigma has been the focal group in several studies, owing to their importance in economic and ecological value and unique breeding styles. Despite this, the genome information is limited and interspecific relationships within the genus Cerotastigma remains unexplored. Here we sequenced, assembled and characterized the 14 plastomes of five species, and conducted phylogenetic analyses of Cerotastigma using plastomes and nuclear ribosomal DNA (nrDNA) data. RESULTS: Fourteen Cerotastigma plastomes possess typical quadripartite structures with lengths from 164,076 to 168,355 bp that consist of a large single copy, a small single copy and a pair of inverted repeats, and contain 127-128 genes, including 82-83 protein coding genes, 37 transfer RNAs and eight ribosomal RNAs. All plastomes are highly conservative and similar in gene order, simple sequence repeats (SSRs), long repeat repeats and codon usage patterns, but some structural variations in the border of single copy and inverted repeats. Mutation hotspots in coding (Pi values > 0.01: matK, ycf3, rps11, rps3, rpl22 and ndhF) and non-coding regions (Pi values > 0.02: trnH-psbA, rps16-trnQ, ndhF-rpl32 and rpl32-trnL) were identified among plastid genomes that could be served as potential molecular markers for species delimitation and genetic variation studies in Cerotastigma. Gene selective pressure analysis showed that most protein-coding genes have been under purifying selection except two genes. Phylogenetic analyses based on whole plastomes and nrDNA strongly support that the five species formed a monophyletic clade. Moreover, interspecific delimitation was well resolved except C. minus, individuals of which clustered into two main clades corresponding to their geographic distributions. The topology inferred from the nrDNA dataset was not congruent with the tree derived from the analyses of the plastid dataset. CONCLUSION: These findings represent the first important step in elucidating plastome evolution in this widespread distribution genus Cerotastigma in the Qinghai-Tibet Plateau. The detailed information could provide a valuable resource for understanding the molecular dynamics and phylogenetic relationship in the family Plumbaginaceae. Lineage genetic divergence within C. minus was perhaps promoted by geographic barriers in the Himalaya and Hengduan Mountains region, but introgression or hybridization could not be completely excluded.


Assuntos
Genomas de Plastídeos , Plumbaginaceae , Filogenia , Plumbaginaceae/genética , Evolução Molecular , Melhoramento Vegetal , China , Ecossistema
3.
Front Genet ; 11: 595334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584794

RESUMO

Himalaya and Hengduan Mountains (HHM) is a biodiversity hotspot, and very rich in endemic species. Previous phylogeographical studies proposed different hypotheses (vicariance and climate-driven speciation) in explaining diversification and the observed pattern of extant biodiversity, but it is likely that taxa are forming in this area in species-specific ways. Here, we reexplored the phylogenetic relationship and tested the corresponding hypotheses within Paeonia subsect. Delavayanae composed of one widespread species (Paeonia delavayi) and the other geographically confined species (Paeonia ludlowii). We gathered genetic variation data at three chloroplast DNA fragments and one nuclear gene from 335 individuals of 34 populations sampled from HHM. We performed a combination of population genetic summary statistics, isolation-with-migration divergence models, isolation by environment, and demographic history analyses. We found evidence for the current taxonomic treatment that P. ludlowii and P. delavayi are two different species with significant genetic differentiation. The significant isolation by environment was revealed within all sampled populations but genetic distances only explained by geographical distances within P. delavayi populations. The results of population divergence models and demographic history analyses indicated a progenitor-derivative relationship and the Late Quaternary divergence without gene flow between them. The coalescence of all sampled cpDNA haplotypes could date to the Late Miocene, and P. delavayi populations probably underwent a severe bottleneck in population size during the last glacial period. Genetic variation in Paeonia subsect. Delavayanae is associated with geographical and environmental distances. These findings point to the importance of geological and climatic changes as causes of the speciation event and lineage diversification within Paeonia subsect. Delavayanae.

4.
Biochem Genet ; 56(3): 235-254, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29350309

RESUMO

Ottelia acuminata is an edible aquatic plant species that is endemic to southwestern China. This plant has experienced habitat degradation resulting from environmental change and extensive human disturbance. Determining the genetic variation and genetic structure of O. acuminata populations could help develop strategies to collect, evaluate, utilize and conserve the species. To this end, we genotyped 183 individuals sampled throughout the species distribution using twelve novel nuclear microsatellite loci (nSSRs). Eight of these nSSRs exhibited low average levels of genetic diversity (HE = 0.351, Ho = 0.376) and showed evidence of significant inbreeding across several populations. A high degree of genetic differentiation was identified among populations (FST = 0.457), probably resulting from limited pollen and seed-mediated gene flow. Only 17.8% of variation existed between O. acuminata var. acuminata and other O. acuminata varieties. Bayesian analysis and a UPGMA dendrogram based on Nei's genetic distance also revealed notably low genetic differentiation among the varieties. This low genetic differentiation is possibly attributed to shared ancestral polymorphisms since their divergence. Additional taxonomic and phylogenetic studies with additional molecular markers are needed to determine the population genetic relationship between O. acuminata varieties. Conservation of this species depends on in situ and ex situ actions, such as controlling habitat water pollution and overexploitation and creating a germplasm bank based on the population genetic differences. To the best of our knowledge, this study represents the first attempt to understand the population genetics of O. acuminata in China using novel nSSR markers developed from transcriptome sequencing and could contribute to the conservation management of this economic plant.


Assuntos
Fluxo Gênico , Hydrocharitaceae/genética , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , Sementes/genética , China , Genética Populacional
5.
Ann Bot ; 109(7): 1341-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22517812

RESUMO

BACKGROUND AND AIMS: The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera. METHODS: The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses. KEY RESULTS: The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade. CONCLUSIONS: The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus-A. panduratus clade remains unresolved, and the systematic position of some segregates of EA Aster requires further study.


Assuntos
Asteraceae/classificação , Asteraceae/genética , DNA de Plantas/genética , Genes de Plantas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...