Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003629

RESUMO

BACKGROUND: Developing herbicide-resistant (HR) crop cultivars is an efficient way to control weeds and minimize crop yield losses. However, widespread and long-term herbicide application has led to the evolution of resistant weeds. Here, we established a resistant (R) E. indica population, collected from imidazolinone-resistant rice cultivar fields. RESULTS: The R population evolved 4.5-fold resistance to imazamox. Acetolactate synthase (ALS) gene sequencing and ALS activity assays excluded the effect of target-site resistance in this population. P450 inhibitor malathion pretreatment significantly reversed resistance to imazamox. RNA sequencing showed that a P450 gene CYP81A104 was expressed higher in R versus susceptible (S) plants. Arabidopsis overexpressing CYP81A104 showed resistance to ALS inhibitors (imazamox, tribenuron-methyl, penoxsulam and flucarbazone-sodium), PSII inhibitor (bentazone), hydroxyphenyl pyruvate dioxygenase inhibitor (mesotrione) and auxin mimics (MCPA), which was generally consistent with the results presented in the R population. CONCLUSION: This study confirmed that the CYP81A104 gene endowed resistance to multiherbicides with different modes-of-action. Our findings provide an insight into the molecular characteristics of resistance and contribute to formulating an appropriate strategy for weed management in HR crops. © 2024 Society of Chemical Industry.

2.
Pestic Biochem Physiol ; 201: 105911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685231

RESUMO

Ammannia auriculata Willd. is a noxious broadleaf weed, commonly infesting rice ecosystems across southern China. A putative resistant A. auriculata population (AHSC-5) was sampled from a rice field of Anhui Province, where bensulfuron-methyl (BM) was unable to control its occurrence. This study aimed to determine the sensitivities of the AHSC-5 population to common-use herbicides, and to investigate the underlying resistance mechanisms. The bioassays showed that the AHSC-5 population was 138.1-fold resistant to BM, compared with the susceptible population (JSGL-1). Pretreatment of malathion reduced the resistance index to 19.5. ALS sequencing revealed an Asp376Glu substitution in the AHSC-5 population, and in vitro ALS activity assays found that 50% activity inhibition (I50) of BM in AHSC-5 was 75.4 times higher than that of JSGL-1. Moreover, the AHSC-5 population displayed cross-resistance to pyrazosulfuron-ethyl (10.6-fold), bispyribac­sodium (3.6-fold), and imazethapyr (2.2-fold), and was in the process of evolving multiple resistance to synthetic auxin herbicides fluroxypyr (2.3-fold) and florpyrauxifen-benzyl (3.1-fold). This study proved the BM resistance in A. auriculata caused by the Asp376Glu mutation and P450-regulated metabolism. This multi-resistant population can still be controlled by penoxsulam, MCPA, bentazone, and carfentrazone-ethyl, which aids in developing targeted and effective weed management strategies.


Assuntos
Acetolactato Sintase , Sistema Enzimático do Citocromo P-450 , Resistência a Herbicidas , Herbicidas , Acetolactato Sintase/genética , Acetolactato Sintase/antagonistas & inibidores , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Malation/farmacologia , Compostos de Sulfonilureia/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Substituição de Aminoácidos
3.
MedComm (2020) ; 5(3): e471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434763

RESUMO

The exact function of M1 macrophages and CXCL9 in forecasting the effectiveness of immune checkpoint inhibitors (ICIs) is still not thoroughly investigated. We investigated the potential of M1 macrophage and C-X-C Motif Chemokine Ligand 9 (CXCL9) as predictive markers for ICI efficacy, employing a comprehensive approach integrating multicohort analysis and single-cell RNA sequencing. A significant correlation between high M1 macrophage and improved overall survival (OS) and objective response rate (ORR) was found. M1 macrophage expression was most pronounced in the immune-inflamed phenotype, aligning with increased expression of immune checkpoints. Furthermore, CXCL9 was identified as a key marker gene that positively correlated with M1 macrophage and response to ICIs, while also exhibiting associations with immune-related pathways and immune cell infiltration. Additionally, through exploring RNA epigenetic modifications, we identified Apolipoprotein B MRNA Editing Enzyme Catalytic Subunit 3G (APOBEC3G) as linked to ICI response, with high expression correlating with improved OS and immune-related pathways. Moreover, a novel model based on M1 macrophage, CXCL9, and APOBEC3G-related genes was developed using multi-level attention graph neural network, which showed promising predictive ability for ORR. This study illuminates the pivotal contributions of M1 macrophages and CXCL9 in shaping an immune-active microenvironment, correlating with enhanced ICI efficacy. The combination of M1 macrophage, CXCL9, and APOBEC3G provides a novel model for predicting clinical outcomes of ICI therapy, facilitating personalized immunotherapy.

5.
Theranostics ; 10(3): 1433-1453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938073

RESUMO

Elucidation of the molecular mechanisms governing aggressiveness of HNSCC may provide clinical therapeutic strategies for patients. In this study, a novel hub miR-204-5p functioning as tumor suppressor has been identified and explored in HNSCC. Methods: A novel hub miR-204-5p was identified based on miRNA microarray, bioinformatics analysis and validated in different HNSCC patient cohorts. The functional role of miR-204-5p and its downstream and upstream regulatory machinery were investigated by gain-of-function and loss-of-function assays in vitro and in vivo. Interactions among miR-204-5p and SNAI2/SUZ12/HDAC1/STAT3 complex were examined by a series of molecular biology experiments. Then, the clinical relevance of miR-204-5p and its targets were evaluated in HNSCC samples. HNSCC patient-derived xenograft (PDX) model was used to assess the therapeutic value of miR-204-5p. Results: We reveal that miR-204-5p as a tumor suppressor is commonly repressed in HNSCC, which can inhibit tumor growth, metastasis and stemness. Mechanically, miR-204-5p suppresses epithelial-mesenchymal transition (EMT) and STAT3 signaling by targeting SNAI2, SUZ12, HDAC1 and JAK2. Among these targets, we further showed that SNAI2, SUZ12, and HDAC1 form a repressive complex on CDH1 promoter to maintain EMT in HNSCC. In turn, the SNAI2/SUZ12/HDAC1 complex interacts with STAT3 on miR-204-5p-regulatory regions to suppress the transcription of miR-204-5p. Moreover, we also show that decrease of miR-204-5p indicates a poor prognosis in HNSCC patients and administration of agomiR-204-5p inhibits tumor growth and metastasis in HNSCC PDX models. Conclusion: miR-204-5p-SNAI2/SUZ12/HDAC1/STAT3 regulatory circuit has a critical role in maintaining aggressiveness of HNSCC, suggesting that miR-204-5p might serve as a promising therapeutic target for clinical intervention.


Assuntos
Genes Supressores de Tumor , Neoplasias de Cabeça e Pescoço/metabolismo , Metástase Linfática/patologia , MicroRNAs/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/metabolismo
6.
Front Oncol ; 10: 624752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33732637

RESUMO

OBJECTIVES: Recently long non-coding RNAs (lncRNAs) have emerged as novel gene regulators involved in tumorigenic processes, including oral squamous cell carcinoma (OSCC). Here, we identified a differentiation-related lncRNA, terminal differentiation-induced non-coding RNA (TINCR). However, its biological function and clinicopathological significance in OSCC still remain unclear. METHODS: The lncRNA expression profiles in OSCC tissues and paired adjacent non-tumor tissues (NATs) from 10 patients were detected by lncRNA microarrays. Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment were performed to identify the most significant module and module functional annotation, respectively. Potential differentiation-related lncRNAs were screened by differential expression analysis. TINCR was further confirmed in OSCC cell lines and tissues of another patient cohort by using qRT-PCR. The correlation between the TINCR expression level and clinicopathological characteristics was analyzed. The effects of TINCR on cell differentiation, migration and invasion were assessed by knockdown or knock-in in vitro and in vivo. RESULTS: WGCNA and GO enrichment analysis showed that one co-expression network was significantly enriched for epithelial cell differentiation, among which, TINCR was significantly downregulated. qRT-PCR analyses validated down-regulation of TINCR in tumor tissues compared with paired NATs, and its expression was closely correlated with pathological differentiation and lymph node metastasis in patients with OSCC. Patients with lower TINCR expression levels had worse survival. Cell function experiments showed that TINCR played a crucial role in epithelial differentiation. Both TINCR and epithelial differentiation-associated genes, including IVL and KRT4, were significantly upregulated during OSCC cell calcium-induced differentiation but were reduced when cell dedifferentiation occurred in tumor spheres. Overexpression of TINCR dramatically suppressed cell dedifferentiation, migration and invasion in vitro, while knockdown of TINCR had the opposite effects. Upregulation of TINCR significantly elevated the expression of terminal differentiation genes and repressed tumor growth in vivo. Moreover, TINCR significantly suppressed the activation of JAK2/STAT3 signaling in OSCC cells. CONCLUSION: Our study suggests that TINCR functions as a tumor suppressor by inducing cell differentiation through modulating JAK2/STAT3 signaling in OSCC. TINCR may serve as a prognostic biomarker and therapeutic target for OSCC.

7.
Sci Rep ; 6: 38411, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917918

RESUMO

Age-related variations in genes and microRNAs expression and DNA methylation have been reported respectively; however, their interactions during aging are unclear. We therefore investigated alterations in the transcriptomes, miRNAomes and DNA methylomes in the same CD4+T cells from newborn (NB), middle-aged (MA) and long-lived (LL) individuals to elucidate the molecular changes and their interactions. A total 659 genes showed significantly expression changes across NB, MA and LL individuals, in which we identified four age-related co-expression modules with three hub networks of co-expressed genes and non-coding RNAs. Moreover, we identified 9835 differentially methylated regions (DMRs) including 7015 hypermethylated and 2820 hypomethylated DMRs in the NB compared with the MA, and 12,362 DMRs including 4809 hypermethylated and 7553 hypomethylated DMRs in the MA compared with the LL. The integrated analysis revealed a potential relationship between genes transcription and DNA methylation for many age- or immune-related genes, suggesting that DNA methylation-dependent transcription regulation is involved in development and functions of T cells during aging. Our results reveals age-related transcription and methylation changes and their interactions in human T cells from the cradle to the grave. Longitudinal work is required to establish the relationship between identified age-associated genes/DNA methylation and T cells aging phenotypes.


Assuntos
Envelhecimento/genética , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Epigênese Genética , MicroRNAs/genética , Transcriptoma , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Linfócitos T CD4-Positivos/citologia , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Recém-Nascido , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Anotação de Sequência Molecular
8.
Front Plant Sci ; 7: 1125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516766

RESUMO

Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.

9.
Sci Rep ; 6: 28072, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321273

RESUMO

As baculoviruses usually have a narrow insecticidal spectrum, knowing the mechanisms by which they control the host-range is prerequisite for improvement of their applications as pesticides. In this study, from supernatant of culture cells transfected with DNAs of an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutant lacking the antiapoptotic gene p35 (vAc(∆P35)) and a cosmid representing a fragment of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), a viral strain was plaque-purified and named vAcRev. vAcRev had a broader host range than either vAc(∆P35) or SeMNPV parental virus, being able to infect not only the permissive hosts of its parental viruses but also a nonpermissive host (Spodoptera litura). Genome sequencing indicated that vAcRev comprises a mixture of two viruses with different circular dsDNA genomes. One virus contains a genome similar to vAc(∆P35), while in the other viral genome, a 24.4 kbp-fragment containing 10 essential genesis replaced with a 4 kbp-fragment containing three SeMNPV genes including a truncated Se-iap3 gene. RNA interference and ectopic expression assays found that Se-iap3 is responsible for the host range expansion of vAcRev, suggesting that Se-iap3 inhibits the progression of apoptosis initiated by viral infection and promotes viral propagation in hosts both permissive and non-permissive for AcMNPV and SeMNPV.


Assuntos
Especificidade de Hospedeiro/fisiologia , Nucleopoliedrovírus/genética , Spodoptera/virologia , Animais , Cosmídeos/genética , Cosmídeos/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Genoma Viral/genética , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Lepidópteros/virologia , Nucleopoliedrovírus/crescimento & desenvolvimento , Nucleopoliedrovírus/fisiologia , Interferência de RNA , Análise de Sequência de DNA , Células Sf9/citologia , Células Sf9/virologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
10.
PLoS One ; 11(2): e0147873, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840182

RESUMO

Spodoptera litura (S. litura) is one of the most destructive agricultural pests worldwide. There is urgent need for a nuclear polyhedrosis virus that is specific to S. litura. To date, there have been no reports regarding the responses of S. litura cells to early Spodoptera litura nucleopolyhedrovirus (SpltNPV) infection due to the lack of a reference genome and transcriptome for S. litura. In this study, a cell transcriptome from the host S. litura was assembled and used for Illumina strand-specific RNA sequencing (RNA-seq) to generate 99180 unigenes, representing the 18 hour infection cycle. More than 2000 S. litura genes were significant differentially regulated throughout the infection. The levels of viral mRNAs began to increase dramatically at 6 hpi, and this increase continued throughout the remainder of the infection. We focused on the expression of genes related to stress responses, apoptosis, metabolic enzymes and host cell innate immune system. A small subset of genes related to host stress response, especially for 62 ones being able to annotated as enzyme, ligand and receptor genes, were observed to be specifically differentially expressed at 6 hpi. At 18 hpi, 104 unigenes were continuously significantly changing from 0 hpi to 18 hpi, considered to be viral multiplication related genes, including 3 annotated SL221 unigenes and 81 viral genes, such as tetraspanin and iap gene. This information and further studies on the regulation of host gene expression by baculovirus infection at early stage will provide the tools needed to enhance the utility of this virus as an effective insecticide.


Assuntos
Perfilação da Expressão Gênica , Nucleopoliedrovírus , Spodoptera/genética , Spodoptera/virologia , Transcriptoma , Animais , Linhagem Celular , Biologia Computacional/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fases de Leitura Aberta , Reprodutibilidade dos Testes
11.
Biochem Biophys Res Commun ; 469(3): 535-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26692485

RESUMO

Cold stress is a major adverse environmental factor that affects plant growth, development, productivity and quality. In the present study, comparative genome-wide transcriptome analysis on two tobacco (Nicotiana tobacum L.) cultivars, cold-tolerant NC567 and cold-sensitive Taiyan8, was performed using RNA-seq technology. After the first assembly, total length of unigenes is from 101,308,644 to 123,781,795 bp, the N50 length is from 1357 to 1475 bp, and 152,688 unigenes in NC567 and 144,160 unigenes in Taiyan8 were identified, respectively. Functional classification of cold-responsive (COR) genes showed that the genes involved in cell wall metabolism, transcription factors, ubiquitin-proteasome system (UPS) and signaling are over-represented, and the COR genes are specifically induced during cold stress in NC567. Pathway analysis revealed the significant enrichment of the COR genes in plant circadian clock. Taken together, the present study suggested the positive roles of the highly induced expression of the COR genes and the conserved mechanism of circadian clock related genes in tobacco response to cold stress, and provided some valuable genes for crop improvement to cope with cold stress.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Transcriptoma/fisiologia , Genótipo , Fatores de Transcrição/metabolismo
12.
Arch Insect Biochem Physiol ; 83(4): 195-210, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740663

RESUMO

Sf-caspase-1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf-caspase-1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase-3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf-caspase-1: the pro-Sf-caspase-1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin-proteasome system. During the activation, the Sf-caspase-1 produces an intermediate form and then undergoes proteolytic processing to form active Sf-caspase-1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf-caspase-1 was unstable.


Assuntos
Caspases/metabolismo , Ativação Enzimática/fisiologia , Spodoptera/enzimologia , Acetilcisteína/análogos & derivados , Animais , Western Blotting , Clonagem Molecular , Primers do DNA/genética , Estabilidade Enzimática/fisiologia , Citometria de Fluxo , Marcação In Situ das Extremidades Cortadas , Indóis , Mutagênese Sítio-Dirigida , Subunidades Proteicas/metabolismo , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...