Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(10): 8657-8666, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752930

RESUMO

AIM: We investigated the effects and targets of gastrodin (GAS) for improving cognitive ability in Alzheimer's disease (AD). METHODS: The targets and mechanisms of GAS were analyzed by network pharmacology. Morris water and eight-arm radial mazes were used to detect the behaviors of 7-months-old APP/PS1 mice. The levels of IBA-1 and PPARγ were examined by histochemical staining, nerve cells were detected by Nissl staining, inflammatory cytokines were measured by ELISA, and protein expressions were monitored by Western blotting. The neurobehavioral effects of GAS on mice were detected after siRNA silencing of PPARγ. Microglia were cultured in vitro and Aß1-42 was used to simulate the pathology of AD. After treatment with GAS, the levels of inflammatory cytokines and proteins were assayed. RESULTS: Network pharmacological analysis revealed that PPARγ was the action target of GAS. By stimulating PPARγ, GAS inhibited NF-κB signaling activation and decreased neuroinflammation and microglial activation, thereby ameliorating the cognitive ability of AD mice. After silencing PPARγ, GAS could not further improve such cognitive ability. Cellular-level results demonstrated that GAS inhibited microglial injury, reduced tissue inflammation, and activated PPARγ. CONCLUSIONS: GAS can regulate microglia-mediated inflammatory response by stimulating PPARγ and inhibiting NF-κB activation, representing a mechanism whereby it improves the cognitive behavior of AD.


Assuntos
Doença de Alzheimer , Álcoois Benzílicos , Glucosídeos , Microglia , NF-kappa B , PPAR gama , Transdução de Sinais , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , PPAR gama/metabolismo , Álcoois Benzílicos/farmacologia , Álcoois Benzílicos/uso terapêutico , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Modelos Animais de Doenças , Masculino , Peptídeos beta-Amiloides/metabolismo
2.
Int Immunopharmacol ; 134: 112149, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692019

RESUMO

Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.


Assuntos
Metabolismo Energético , Lúpus Eritematoso Sistêmico , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Animais , Mitocôndrias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Neurol Ther ; 12(4): 1299-1308, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270442

RESUMO

INTRODUCTION: Recent observational studies have reported the association between ischemic stroke (IS) and cerebral microbleeds (CMBs). Whether this reflects a causal association remains to be established. Herein, we adopted a two-sample bidirectional Mendelian randomization (MR) analysis to comprehensively evaluate the causal association of IS and CMBs. METHODS: The summary-level genome-wide association studies (GWASs) data of IS were obtained from the GIGASTROKE consortium (62,100 European ancestry cases and 1,234,808 European ancestry controls). All IS cases could be further divided into large-vessel atherosclerosis stroke (LVS, n = 6399), cardio-embolic stroke (CES, n = 10,804) and small-vessel occlusion stroke (SVS, n = 6811). Meanwhile, we used publicly available summary statistics from published GWASs of CMBs (3556 of the 25,862 European participants across 2 large initiatives). A bidirectional MR analysis was conducted using inverse-variance weighting (IVW) as the major outcome, whereas MR-Egger and weighted median (WM) were used to complement the IVW estimates as they can provide more robust estimates in a broader set of scenarios but are less efficient (wider CIs). A Bonferroni-corrected threshold of p < 0.0125 was considered significant, and p values between 0.0125 and 0.05 were considered suggestive of evidence for a potential association. RESULTS: We detected that higher risk of IS [IVW odds ratio (OR) 1.47, 95% confidence interval (CI) 1.04-2.07, p = 0.03] and SVS (IVW OR 1.62, 95% CI 1.07-2.47, p = 0.02) were significantly associated with CMBs. Reverse MR analyses found no significant evidence for a causal effect of CMBs on IS and its subtypes. CONCLUSIONS: Our study provides potential evidence that IS and SVS are causally linked to increased risk of CMBs. Further research is needed to determine the mechanisms of association between IS and CMBs.

4.
EBioMedicine ; 90: 104499, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870200

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS: The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS: The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION: In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING: This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.


Assuntos
Antineoplásicos , Armadilhas Extracelulares , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Oxaliplatina/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Antineoplásicos/efeitos adversos
5.
ACS Appl Mater Interfaces ; 14(24): 27623-27633, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35673881

RESUMO

Glioma is the most lethal brain tumor with a poor prognosis, and a combination of multiple therapeutic strategies is critical for postoperative glioma treatment. Herein, a multifunctional hybrid hydrogel system (designated as CP&CL@RNPPTX-Gel) was developed for local treatment of postoperative glioma. The system was composed of self-illuminating chlorin e6 (Ce6) conjugated with luminol molecule (CL)-loaded glioma-targeting paclitaxel prodrug nanoparticles and copper peroxide nanodots (CP NDs) coembedded into a three-dimensional thermosensitive hydroxypropyl chitin hydrogel frame. After injection of CP&CL@RNPPTX-Gel into the cavity of postoperative glioma, the solution could be cross-linked into the gel as a drug reservoir under body temperature stimulation. Then, the sustained-released CP NDs decomposed into Cu2+ and H2O2 in the acidic microenvironment of the glioma cells to exert chemodynamic therapy (CDT). Meanwhile, Cu2+ could catalyze the self-luminescence of CL to induce photodynamic therapy (PDT) without external excitation light. Moreover, paclitaxel prodrug nanoparticles degraded into paclitaxel to restrain residual glioma cells in response to intracellular reduced glutathione (GSH). The in vitro and in vivo results showed that CP&CL@RNPPTX-Gel had great potential as a multifunctional hybrid hydrogel system with remarkable therapeutic effects for postoperative glioma treatment via a combination of chemotherapy, CDT, and PDT.


Assuntos
Glioma , Nanopartículas , Fotoquimioterapia , Pró-Fármacos , Linhagem Celular Tumoral , Cobre/farmacologia , Glioma/tratamento farmacológico , Glioma/cirurgia , Humanos , Hidrogéis/farmacologia , Peróxido de Hidrogênio/farmacologia , Nanopartículas/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Pró-Fármacos/farmacologia , Microambiente Tumoral
6.
RSC Adv ; 12(25): 15861-15869, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733666

RESUMO

Hypochlorous acid (HOCl) and sulfur dioxide derivatives (SO3 2-/HSO3 -) play critical roles in complex signal transduction and oxidation pathways. Therefore, it is meaningful and valuable to detect both HOCl and SO2 derivatives in biosystems by a fluorescence imaging assay. In this work, we developed a red-emitting fluorescent probe (DP) by the condensation of malononitrile and phenothiazine derivatives through a C[double bond, length as m-dash]C double bond. DP was designed with a donor-π-acceptor (D-π-A) structure, which enables absorption and emission in the long wavelength region. In the presence of HOCl, specific oxidation of the thioether of phenothiazine in DP to a sulfoxide derivative (DP[double bond, length as m-dash]O) occurs, resulting in a hypochromic shift (572 nm to 482 nm) of the absorption spectra and "OFF-ON" response of the maximum emission at 608 nm. After the activation of the C[double bond, length as m-dash]C double bond by oxidation, DP[double bond, length as m-dash]O reacts specifically with SO3 2-/HSO3 - via a 1,4-nucleophilic addition reaction leading to a decrease in the intensity of the absorption and emission spectra, which enabled the realization of sequential detection of HOCl and SO3 2-/HSO3 - by a single fluorescent probe. The detection limits of DP for HOCl and SO3 2-/HSO3 - were calculated to be 81.3 nM and 70.8 nM/65.1 nm, respectively. The results of fluorescence microscopic imaging indicated that DP shows potential for the detection of intracellular HOCl and SO3 2-/HSO3 -. Using adult zebrafish and nude mice as live animal models, DP was successfully used for the fluorescence imaging of HOCl and SO3 2-/HSO3 - in vivo.

7.
Sci Total Environ ; 842: 156775, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724797

RESUMO

With the increasing pollution of plastics and the widespread use of polylactic acid (PLA), its weathering process in the natural environment needs to be studied. Hence, we investigated the characteristics of PLA under conventional weathering conditions and the adsorption behavior between PLA and tetracycline (TC). The results showed cracks and holes in the weathered PLA surface, an increase in oxygen-containing functional groups, and a 77.94 % decrease in contact angle, causing more amount of TC to be adsorbed. The maximum adsorption capacity of PLA for TC is approximately 3.5 times higher than before weathering due to multilayer physical adsorption. Nevertheless, the surface of the microplastics weathered by seawater did not change significantly. This work elucidates the weathering mechanism of biodegradable microplastics under abiotic conditions, thus correctly assessing the difference in natural and conventional degradability of biodegradable plastics.


Assuntos
Plásticos Biodegradáveis , Poluentes Químicos da Água , Adsorção , Antibacterianos , Microplásticos , Plásticos , Poliésteres , Tetraciclina , Poluentes Químicos da Água/análise
9.
Acta Biomater ; 147: 314-326, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588994

RESUMO

Reperfusion injury is one of the major causes of disability and death caused by ischemic stroke, and drug development focuses mainly on single neuron protection. However, different kinds of cells in the neurovascular units (NVUs), including neurons, microglia and vascular endothelial cells, are pathologically changed after cerebral ischemia-reperfusion injury, resulting in an urgent need to develop a drug delivery system to comprehensively protect the kinds of cells involved in the NVU. Herein, we have constructed a c(RGDyK) peptide modified, NF-κB inhibitor caffeic acid phenethyl ester (CAPE)-loaded and reactive nitrogen species (RNS) stimuli-responsive liposomal nanocarrier (R-Lipo-CAPE) to target ischemic lesions and then remodel the NVU to reduce the progression of cerebral ischemia-reperfusion injury. The R-Lipo-CAPE liposomes were approximately 170 nm with a zeta potential of -30.8 ± 0.2 mV. The in vitro CAPE release behavior from R-Lipo-CAPE showed an RNS-dependent pattern. For in vivo studies, transient middle cerebral artery occlusion/reperfusion (MCAO) model mice treated with R-Lipo-CAPE had the least neurological impairment and decreased brain tissue damage, with an infarct area of 13%, compared with those treated with saline of 53% or free CAPE of 38%. Furthermore, microglia in the ischemic brain were polarized to the tissue-repairing M2 phenotype after R-Lipo-CAPE treatment. In addition, R-Lipo-CAPE-treated mice displayed a prominent down-regulated expression of MMP-9 and restored expression of the tight junction protein claudin-5. This proof-of-concept indicates that R-Lipo-CAPE is a promising nanomedicine for the treatment of cerebral ischemia-reperfusion injury through the regulation of neurovascular units. STATEMENT OF SIGNIFICANCE: Based on the complex mechanism and difficulty in treatment of cerebral ischemia-reperfusion injury, the overall regulation of neurovascular unit has become an extremely important target. However, little nanomedicine has been directed to remodel the neurovascular units in targeted cerebral ischemia-reperfusion injury therapy. Here, c(RGDyK) peptide modified reactive nitrogen species (RNS) stimuli-responsive liposomal nanocarrier loaded with a NF-κB inhibitor (CAPE), was designed to simultaneously regulate various cells in the microenvironment of cerebral ischemia-reperfusion injury to remodel the neurovascular units. Our in vitro and in vivo data showed that the intelligent nanocarrier exerted the ability of pathological signal stimuli-responsive drug release, cerebral ischemia-reperfusion injury site targeting and neurovascular units remodeling through reducing neuron apoptosis, regulating microglia polarization and repairing vascular endothelial cell. Overall, the intelligent liposomal drug delivery system was a promising and safe nanomedicine in the perspective of cerebral ischemia-reperfusion injury treatment.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Nitrogênio , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
10.
PeerJ ; 10: e13306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497185

RESUMO

Excessive soil salt content (SSC) seriously affects the crop growth and economic benefits in the agricultural production area. Prior research mainly focused on estimating the salinity in the top bare soil rather than in deep soil that is vital to crop growth. For this end, an experiment was carried out in the Hetao Irrigation District, Inner Mongolia, China. In the experiment, the SSC at different depths under vegetation was measured, and the Sentinel-1 radar images were obtained synchronously. The radar backscattering coefficients (VV and VH) were combined to construct multiple indices, whose sensitivity was then analyzed using the best subset selection (BSS). Meanwhile, four most commonly used algorithms, partial least squares regression (PLSR), quantile regression (QR), support vector machine (SVM), and extreme learning machine (ELM), were utilized to construct estimation models of salinity at the depths of 0-10, 10-20, 0-20, 20-40, 0-40, 40-60 and 0-60 cm before and after BSS, respectively. The results showed: (a) radar remote sensing can be used to estimate the salinity in the root zone of vegetation (0-30 cm); (b) after BSS, the correlation coefficients and estimation accuracy of the four monitoring models were all improved significantly; (c) the estimation accuracy of the four regression models was: SVM > QR > ELM > PLSR; and (d) among the seven sampling depths, 10-20 cm was the optimal inversion depth for all the four models, followed by 20-40 and 0-40 cm. Among the four models, SVM was higher in accuracy than the other three at 10-20 cm (RP 2 = 0.67, RMSEP = 0.12%). These findings can provide valuable guidance for soil salinity monitoring and agricultural production in the arid or semi-arid areas under vegetation.


Assuntos
Tecnologia de Sensoriamento Remoto , Solo , Tecnologia de Sensoriamento Remoto/métodos , Radar , Cloreto de Sódio , Cloreto de Sódio na Dieta
11.
J Control Release ; 345: 786-797, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367277

RESUMO

It is well known that glioma is currently the most malignant brain tumor. Because of the existence of blood-brain barrier (BBB) and tumor cell heterogeneity, systemic chemotherapy exerts unsatisfied therapeutic effect for the treatment of glioma after surgical resection and may even damage the body's immune system. Here, we developed an in situ sustained-release hydrogel delivery system for combined chemo-immunotherapy of glioma by combined chemotherapy drug and immunoadjuvant through the resection cavity local delivery. Briefly, glioma homing peptide modified paclitaxel targeting nanoparticles (PNPPTX) and mannitolated immunoadjuvant CpG targeting nanoparticles (MNPCpG) were embedded into PLGA1750-PEG1500-PLGA1750 thermosensitive hydrogel framework (PNPPTX&MNPCpG@Gel). The in vitro and in vivo results showed that the targeting nanoparticles-hydrogel hybrid system could cross-link into a gel drug reservoir when injected into the resection cavity of glioma. And then, the sustained-release PNPPTX could target the residual infiltration glioma cells and produce tumor antigens. Meanwhile, MNPCpG targeted and activated the antigen-presenting cells, which enhanced the tumor antigen presentation ability and activated CD8+T and NK cells to reverse immunosuppression of glioma microenvironment. This study indicated that the PNPPTX&MNPCpG@Gel system could enhance the therapeutic effect of glioma by chemo-immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas , Adjuvantes Imunológicos/uso terapêutico , Antígenos de Neoplasias/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Hidrogéis/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Microambiente Tumoral
12.
Expert Opin Drug Discov ; 17(5): 489-500, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35287523

RESUMO

INTRODUCTION: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with substantial phenotypic heterogeneity. Currently, our understanding of the pathogenesis is still limited, and as a result, specific and efficacious therapies are lacking. Various mouse models have been established to serve as powerful tools that will promote a better understanding of the disease and the ability to test novel drugs before clinical application. AREAS COVERED: The authors review the existing mouse models of SLE in terms of pathogenesis and manifestations, as well as their applications in drug discovery and development. The areas of focus include promising novel therapeutics that could benefit patients in the future and the contribution of mouse models used in preclinical studies. EXPERT OPINION: Given the diversity of SLE mouse models with different characteristics, researchers must select a suitable model based on the mechanism involved. The use of multiple models is needed for drug testing studies to evaluate drug efficacy on different genetic backgrounds and other mechanisms to provide a reference for clinical trials.


Assuntos
Lúpus Eritematoso Sistêmico , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , Camundongos
13.
ACS Appl Mater Interfaces ; 13(50): 59683-59694, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902970

RESUMO

Tumor-associated neutrophil extracellular traps (NETs) play a critical role in promoting tumor growth and assisting tumor metastasis. Herein, a smart nanocarrier (designated as mP-NPs-DNase/PTX) based on regulating tumor-associated NETs has been developed, which consists of a paclitaxel (PTX) prodrug nanoparticle core and a poly-l-lysine (PLL) conjugated with the matrix metalloproteinase 9 (MMP-9)-cleavable Tat-peptide-coupled deoxyribonuclease I (DNase I) shell. After accumulating at the site of the tumor tissue, the nanocarrier can release DNase I in response to MMP-9 to degrade the structure of NETs. Then, the remaining moiety can uptake the tumor cells via the mediation of exposed cell penetrating peptide, and the PTX prodrug nanoparticles will lyse in response to the high intracellular concentration of reduced glutathione to release PTX to exert a cytotoxic effect of tumor cells. Through in vitro and in vivo evaluations, it has been proven that mP-NPs-DNase/PTX could serve as potential NET-regulated nanocarrier for enhanced inhibition of malignant tumor growth and distant metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Armadilhas Extracelulares/química , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Nanopartículas/química , Neutrófilos/química , Paclitaxel/química , Paclitaxel/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo
14.
Ther Clin Risk Manag ; 17: 1295-1304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887664

RESUMO

PURPOSE: Currently, there is no uniform standard to guide postoperative adjuvant chemotherapy for patients with multifocal non-small cell lung cancers (NSCLCs) ≤3 cm. Therefore, there is an urgent need to explore prognostic molecular markers to identify high-risk patients with multifocal NSCLCs ≤3 cm. We aimed to explore the potential value of metastasis-associated protein 1(MTA1) expression in risk stratification of patients with multifocal NSCLCs ≤3 cm. METHODS: We retrospectively analyzed the clinical data and postoperative survival data of patients with multifocal NSCLCs ≤3 cm. Paraffin-embedded tissue sections were used for immunohistochemistry. Semiquantitative immunoreactivity scoring (IRS) system was used to evaluate the nuclear expression of MTA1. SPSS software (version 23.0) was used to analyze the data. RESULTS: The IRS of MTA1 nuclear expression in 259 lesions of 119 patients ranged from 2.2 to 11.7 (median: 5.6). Our results showed that MTA1 expression was highest in high-risk pathological subtypes of lung adenocarcinoma. MTA1 expression in multiple primary lung cancers (MPLCs) was lower than that in intrapulmonary metastases (IPMs). The median follow-up duration was 25.97 months. The disease-free survival (DFS) of patients with MPLCs was significantly better than that of patients with IPMs, and the DFS of patients with high MTA1 expression was significantly worse than that of patients with low MTA1 expression. Multivariate Cox analysis showed that high MTA1 expression (hazard ratio: 7.937, 95% confidence interval: 2.433-25.64, p =0.001) was a statistically significant predictor of worse DFS in patients with multifocal NSCLCs ≤3 cm. CONCLUSION: MTA1 expression can stratify the risk in patients with multifocal NSCLCs ≤3 cm. Patients with MTA1 immunohistochemical score >5.6 are at a high risk of postoperative recurrence, and these patients may benefit from postoperative adjuvant chemotherapy.

15.
Front Neurol ; 12: 669025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054709

RESUMO

Background: Studies exploring the predictive performance of major risk factors associated with future stroke events are insufficient, and a useful tool to predict individual risk is not available. Therefore, personalized advice for preventing future stroke in patients with moyamoya disease (MMD) cannot provide evidence-based recommendations. The aim of this study was to develop a novel nomogram with reliable validity to predict the individual risk of future stroke for adult MMD patients. Methods: This study included 450 patients from seven medical centers between January 2013 and December 2018. Follow-ups were performed via clinical visits and/or telephone interviews from initial discharge to December 2019. The cohort was randomly assigned to a training set (2/3, n = 300) for nomogram development and a test set (1/3, n = 150) for external validation. The Kaplan-Meier analyses and receiver operating characteristic (ROC) curves were applied to assess the clinical benefits of this nomogram. Results: Diabetes mellitus, a family history of MMD, a past history of stroke or transient ischemic attack, clinical manifestation, and treatment were identified as major risk factors via the least absolute shrinkage and selection operator (LASSO) method. A nomogram including these predictors was established via a multivariate Cox regression model, which displayed excellent discrimination [Harrell's concordance index (C-index), 0.85; 95% confidence interval (CI): 0.75-0.96] and calibration. In the external validation, the nomogram was found to have good discrimination (C-index, 0.81; 95% CI: 0.68-0.94) and calibration. In the subgroup analysis, this predictive nomogram also showed great performance in both ischemic-type (C-index, 0.90; 95% CI: 0.77-1.00) and hemorrhagic-type MMD (C-index, 0.72; 95% CI: 0.61-0.83). Furthermore, the nomogram was shown to have potential in clinical practice through Kaplan-Meier analyses and ROC curves. Conclusions: We developed a novel nomogram incorporating several clinical characteristics with relatively good accuracy, which may have considerable potential for evaluating individual future stroke risk and providing useful management recommendations for adult patients with MMD in clinical practice.

16.
Food Chem (Oxf) ; 2: 100027, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415634

RESUMO

Responsive small-molecule fluorescence probe specific for target analyte detection is an emerging technology for food safety and quality analysis. In this work, we report a new water soluble small-molecule fluorescence probe (PG) for the detection of hypochlorous acid (HOCl) in drinking water samples. Probe PG was developed by coupling of a glucosamine into 10-methyl-10H-phenothiazine fluorophore with a HOCl-responsive C=N bond. The thioether is another recognition site that can be oxidized to be sulfoxide in water. Due to the specific reactions triggered by HOCl, probe PG's absorption band is blue shifted from 388 to 340 nm, and fluorescence at 488 nm is more than 55-fold enhanced. Probe PG features high fluorescence stability in PBS buffer with varied pH, fast response and high selectivity to HOCl. The application of the probe PG for HOCl detection in real-world samples is demonstrated by HOCl detection in drinking water, including tap water, purified water, and spring water samples. The recoveries of this method for HOCl detection in drinking water are in the range of 99.17-102.3%. This work thus provides a new method for HOCl detection in drinking water with high precision and accuracy.

17.
Biomed Res Int ; 2020: 6622502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335925

RESUMO

OBJECTIVES: The optimal treatment choice of chronic carotid artery occlusion (CAO) remains inconclusive. This study was aimed at exploring the safety and effectiveness of hybrid surgery in the treatment of CAO and at determining predictors for successful recanalization. METHODS: In this study, we enrolled 37 patients with CAO who underwent hybrid surgical treatment during the period 2016-2018. We extracted and analyzed patients' demographic data, disease characteristics, surgical success rates, perioperative complications, and prognosis. RESULTS: A total of 37 patients with symptomatic CAO underwent hybrid surgical treatment. Thirty cases (81.1%) were successfully recanalized, while seven were not. Blood reflux after carotid endarterectomy occurred in 18 patients (60%) of the success group and 1 (14.3%) of the failure group (OR, 9.0; 95% CI, 0.95-54.5; P = 0.042). The rate of distal ICA reconstruction below the clinoid segment was 20 (66.7%) in the success group and 1 (14.3%) in the failure group (OR, 12.0; 95% CI, 1.3-113.7; P = 0.029). In patients with successful recanalization, no ischemic events occurred after surgery and during follow-up, but restenosis of >50% was found in one case. In the failure group, two patients experienced recurrent ischemic events during follow-up. Perfusion imaging in successful recanalization cases is significantly improved, preoperative I/C ratio was 1.44 (IQR 1.27-1.55), and postoperative 1.12 (IQR 1.05-1.23). National Institutes of Health Stroke Scale (NIHSS) score of successful recanalization cases was 5.35 (2.26) before surgery and 2.03 (1.40) at 6 months (P < 0.01). CONCLUSION: Hybrid surgery might be a safe and effective way to treat CAO. Distal internal carotid artery reconstruction to below the clinoid segment and blood reflux after carotid endarterectomy are predictors of successful recanalization.


Assuntos
Doenças das Artérias Carótidas/complicações , Artéria Carótida Interna/cirurgia , Estenose das Carótidas/cirurgia , Endarterectomia das Carótidas/métodos , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , Período Pós-Operatório , Prognóstico , Estudos Retrospectivos , Acidente Vascular Cerebral/cirurgia , Trombose/complicações , Tomografia Computadorizada por Raios X , Resultado do Tratamento
18.
Int J Nanomedicine ; 15: 5491-5501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848385

RESUMO

PURPOSE: Currently, the treatment of brain metastases from non-small cell lung cancer (NSCLC) is rather difficult in the clinic. A combination of small molecule-targeted drug and chemo-drug is a promising therapeutic strategy for the treatment of NSCLC brain metastases. But the efficacy of this combination therapy is not satisfactory due to the blood-brain barrier (BBB). Therefore, it is urgent to develop a drug delivery system to enhance the synergistic therapeutic effects of small molecule-targeted drug and chemo-drug for the treatment of NSCLC brain metastases. METHODS: T7 peptide installed and osimertinib (AZD9291) loaded intracellular glutathione (GSH) responsive doxorubicin prodrug self-assembly nanocarriers (T7-DSNPs/9291) have been developed as a targeted co-delivery system to enhance the combined therapeutic effect on brain metastases from NSCLC. In vitro cell experiments, including intracellular uptake assay, in vitro BBB transportation, and MTT assay were used to demonstrate the efficacy of T7-DSNPs/9291 in NSCLC brain metastasis in vitro. Real-time fluorescence imaging analysis, magnetic resonance imaging analysis, and Kaplan-Meier survival curves were used to study the effect of T7-DSNPs/9291 on an animal model in vivo. RESULTS: T7-DSNPs/9291 could significantly enhance BBB penetration of AZD9291 and doxorubicin via transferrin receptor-mediated transcytosis. Moreover, T7-DSNPs/9291 showed significant anti-NSCLC brain metastasis effect and prolonged median survival of an intracranial NSCLC brain metastasis animal model. CONCLUSION: T7-DSNPs/9291 is a potential drug delivery system for the combined therapy of brain metastasis from NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Portadores de Fármacos/administração & dosagem , Neoplasias Pulmonares/patologia , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Colágeno Tipo IV/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Fragmentos de Peptídeos/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Receptores da Transferrina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Neurol ; 11: 608000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519687

RESUMO

Background: The use of antiplatelet agents in ischemic moyamoya disease (MMD) is controversial. This study aimed to investigate the effectiveness and safety of antiplatelet therapy compared with conservative treatment and surgical revascularization in ischemic MMD patients. Methods: Ischemic MMD patients were retrospectively enrolled from eight clinical sites from January 2013 to December 2018. Follow-up was performed through clinical visits and/or telephone interviews from first discharge to December 2019. The primary outcome was the episodes of further ischemic attacks, and the secondary outcome was the individual functional status. Risk factors for future stroke were identified by the LASSO-Cox regression model. Propensity score matching was applied to assemble a cohort of patients with similar baseline characteristics using the TriMatch package. Results: Among 217 eligible patients, 159 patients were included in the analyses after a 1:1:1 propensity score matching. At a mean follow-up of 33 months, 12 patients (7.5%) developed further incident cerebral ischemic events (surgical:antiplatelet:conservative = 1:3:8; p = 0.030), 26 patients (16.4%) developed a poor functional status (surgical:antiplatelet:conservative = 7:12:7; p = 0.317), and 3 patients (1.8%) died of cerebral hemorrhage (surgical:antiplatelet:conservative = 1:2:0; p = 0.361). The survival curve showed that the risk of further cerebral ischemic attacks was lowest with surgical revascularization, while antiplatelet therapy was statistically significant for preventing recurrent risks compared with conservative treatment (χ2 = 8.987; p = 0.011). No significant difference was found in the functional status and bleeding events. The LASSO-Cox regression model revealed that a family history of MMD (HR = 6.93; 95% CI: 1.28-37.52; p = 0.025), a past history of stroke or transient ischemic attack (HR = 4.35; 95% CI: 1.09-17.33; p = 0.037), and treatment (HR = 0.05; 95% CI: 0.01-0.32; p = 0.001) were significantly related to the risk of recurrent strokes. Conclusions: Antiplatelet agents were effective and safe in preventing further cerebral ischemic attacks in adult patients with ischemic MMD. They may be a replacement therapy for patients with surgical contraindications and for patients prior to revascularization.

20.
ACS Nano ; 13(8): 8577-8588, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31339295

RESUMO

Ischemic stroke caused by a thrombus clog and ischemia is one of the most lethal and disabling cerebrovascular diseases. A sequentially targeted delivery system is highly desired to deliver thrombolytics and neuroprotectant to the site of the thrombus and ischemic penumbra, respectively, to pursue a maximized combinational effect. Inspired by the vital roles that platelets play in thrombus formation, herein, we develop a bioengineered "nanoplatelet" (tP-NP-rtPA/ZL006e) for sequentially site-specific delivery of recombinant tissue plasminogen activator (rtPA) and neuroprotectant (ZL006e) for ischemic stroke treatment. The tP-NP-rtPA/ZL006e consists of a ZL006e-loaded dextran derivative polymeric nanoparticle core and platelet membrane shell conjugated with thrombin-cleavable Tat-peptide-coupled rtPA. Mediated by the cloak of the platelet membrane, tP-NP-rtPA/ZL006e targets the thrombus site and rtPA is triggered to release by the upregulated thrombin. Subsequently, the in situ exposed Tat peptide enhanced penetration of the "nanoplatelet" across the blood-brain barrier into ischemic brain for ZL006e site-specific delivery. From the in vitro and in vivo evaluation, tP-NP-rtPA/ZL006e is demonstrated to significantly enhance the anti-ischemic stroke efficacy in the rat model  with middle cerebral artery occlusion, showing a 63 and 72% decrease in ischemic area and reactive oxygen species level compared to that with free drug combination, respectively.


Assuntos
Plaquetas/química , Isquemia Encefálica/tratamento farmacológico , Nanopartículas/química , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/patologia , Dextranos/química , Dextranos/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Produtos do Gene tat/química , Produtos do Gene tat/farmacologia , Humanos , Masculino , Nanopartículas/uso terapêutico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Acidente Vascular Cerebral/patologia , Trombina/química , Trombina/farmacologia , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...