Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 2): 132597, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34666070

RESUMO

In this study, we fabricated carbonaceous composite membranes by loading integrated mats of nitrogen-doped graphene, reduced graphene oxide, and carbon nanotubes (NG/rGO/CNTs) on a nylon microfiltration substrate and employed it for in-situ catalytic oxidation by activating peroxydisulfate (PDS) for the removal of sulfamethoxazole (SMX) in a real water matrix. The impact of coexisting organics on the performance of carbonaceous catalysis was investigated in the continuous filtration mode. Reusability testing and radical quenching experiments revealed that the non-radical pathways of surface-activated persulfate mainly contributed to SMX degradation. A stable SMX removal flux (rSMX) of 22.15 mg m-2·h-1 was obtained in 24 h when tap water was filtered continuously under a low pressure of 1.78 bar and in a short contact time of 1.4 s, which was slightly lower than the rSMX of 23.03 mg m-2·h-1 performed with deionized water as the control group. In addition, higher contents of protein-, fulvic acid-, and humic acid-like organics resulted in membrane fouling and significantly suppressed SMX removal during long-term filtration. Changes in the production of sulfate ions and the Raman spectra of carbon mats indicated that organics prevent the structural defects of the carbon matrix from participating in PDS activation. Moreover, NG/rGO/CNTs composite membranes coupled with activated persulfate oxidation exhibited good self-cleaning ability, because membrane fouling could be partly reversed by restoring filtration pressure during operation. This study provides a novel and effective oxidation strategy for efficient SMX removal in water purification, allowing the application of carbonaceous catalysis for the selective degradation of emerging contaminants.


Assuntos
Nanotubos de Carbono , Sulfametoxazol , Catálise , Filtração , Água
2.
Environ Sci Pollut Res Int ; 28(21): 26828-26839, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33496953

RESUMO

Metal-free carbonaceous composite membranes have been proven to effectively drive novel in situ catalytic oxidation for the degradation of organic pollutants via persulfates activation. In this study, nitrogen-doped graphene (NG) was employed as a modifier to enhance the catalytic activity of the carbon mats by assembly with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) on the top of a nylon supporter. The morphology and performance of the NG/rGO/CNTs composite membrane were compared to those obtained without the addition of NG (rGO/CNTs). Owing to the larger nanochannels for water delivery and stronger hydrophobicity on the surface, the NG/rGO/CNTs composite membrane shows a superior low-pressure filtration performance in favor of energy-saving operation. For the in situ catalytic oxidation of the NG/rGO/CNTs composite membrane through the activation of peroxydisufate (PDS), the average removal rate of sulfamethoxazole (SMX), one of frequently detected sulfonamide antibiotics in water, can reach 21.7 mg·m-2·h-1 under continuous filtration mode, which was 17% more rapid than that of the rGO/CNTs, resulting in significant detoxifying of the oxidation intermediates. Owing to the addition of NG into the carbon mats, the reactive nitrogen-doped sites identified by X-Ray photoelectron spectroscopy (XPS), such as pyridinic and graphitic N, played important roles in PDS activation, while both the radical and non-radical pathways were involved in in situ catalytic oxidation. According to the experimental evidence of the effects that solution environment has on the SMX removal and transmembrane pressure, the NG/rGO/CNTs composite membrane shows a relatively high resistance to changes in the solution pH, chloride ion inhibition, and background organics fouling. These results suggest a new approach to the application of activated persulfate oxidation in water treatment, such that improvements to the reaction stability warrant further investigation.


Assuntos
Grafite , Nanotubos de Carbono , Nitrogênio , Sulfametoxazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...