Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401283, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924314

RESUMO

Fibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.6% (glass-scale) are obtained by heat-assisted surface void packing without hydrophobization of nanocellulose. PCNF gel cakes serve here as templates for surface roughening, thereby resulting in a high haze (73.8%), and the roughened films can block heat transfer by increasing solar reflection in addition to a reduced thermal conduction. Additionally, obtained films can tune distribution of light from visible to near-infrared spectral range, enabling uniform colored lighting and inhibiting localized heating. Furthermore, an integrated simulation of lighting and cooling energy consumption in the case of office buildings shows that the film can reduce the total energy use by 19.2-38.1% under reduced lighting levels. Such a scalable and versatile engineering strategy provides an opportunity to endow nanocellulose-reinforced materials with tunable optical and thermal functionalities, moving their practical applications in green buildings forward.

2.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610339

RESUMO

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Assuntos
Antibacterianos , Ressonância de Plasmônio de Superfície , Enrofloxacina , Ciprofloxacina , Tecnologia de Fibra Óptica
3.
RSC Adv ; 11(59): 37290-37298, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496438

RESUMO

ß-sheet-rich amyloid fibril or aggregate accumulation has been implicated in a number of human diseases. Numerous studies demonstrate that natural polyphenols decrease the risk of degenerative diseases and inhibit in vitro amyloid formation. However, the molecular mechanism for the anti-amyloidogenesis of polyphenols is still unclear. Thus, this study investigates the effects of oligomeric procyanidins (OPCs), resveratrol, and trehalose on the amyloidogenicity of insulin via thioflavin-T (ThT) fluorescence, dynamic light scattering (DLS), circular dichroism (CD), and transmission electronic microscopy (TEM). The results demonstrate that the order of inhibitory effects on insulin amyloid fibrillation is OPCs > resveratrol > trehalose, suggesting that the polyphenolic structure is important for fibril deposition. OPCs show potent inhibitory effects at all stages of insulin fibrillation and redirect the insulin aggregation pathway via the formation of unstructured, off-pathway aggregates. These findings contribute to the development of novel anti-amyloidogenic products from naturally occurring materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...