Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 3577-3588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650837

RESUMO

Background: Manifestations of thyroid-associated ophthalmopathy (TAO) vary greatly. Few tools and indicators are available to assess TAO, restricting personalized diagnosis and treatment. Aim: To identify an aptamer targeting thyroid-stimulating hormone receptor (TSHR) and utilize this aptamer to evaluate clinical activity in patients with TAO. Methods: An aptamer targeting TSHR was developed by exponential enrichment and systematic evaluation of TSHR ligands. After truncation and optimization, the affinity, equilibrium dissociation constant, and serum stability of this aptamer were evaluated. The affinity of the TSHR-targeting aptamer to isolated fibrocytes was assessed, as was aptamer internalization by fibrocytes. The mechanism of binding was determined by molecular docking. The correlation between disease manifestations and the percentage of TSHR-positive cells was assessed by correlation analysis. Results: The aptamer TSHR-21-42 was developed to bind to TSHR, with the equilibrium dissociation constant being 71.46 Kd. Isolated fibrocytes were shown to bind TSHR-21-42 through TSHR, with its affinity maintained at various temperatures and ion concentrations. TSHR-21-42 could compete with anti-TSHR antibody, both for binding site to TSHR and uptake by cells after binding. In addition, TSHR-21-42 could bind to leukocytes in peripheral blood, with this binding differing in patients with TAO and healthy control subjects. The percentage of TSHR-positive monocytes, as determined by binding of TSHR-21-42, correlated positively with clinical activity score in patients with TAO, indicating that TSHR-21-42 binding could assess the severity of TAO. Conclusion: This aptamer targeting TSHR may be used to objectively assess disease activity in patients with TAO, by evaluating the percentages of TSHR positive cells in peripheral blood.


Assuntos
Aptâmeros de Nucleotídeos , Monócitos , Receptores da Tireotropina , Humanos , Aptâmeros de Nucleotídeos/química , Monócitos/metabolismo , Receptores da Tireotropina/metabolismo , Feminino , Simulação de Acoplamento Molecular , Masculino , Adulto , Pessoa de Meia-Idade , Técnica de Seleção de Aptâmeros/métodos
2.
Front Public Health ; 12: 1324141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638474

RESUMO

Purpose: To quantify the global impact of vision impairment in individuals aged 65 years and older between 1990 and 2019, segmented by disease, age, and sociodemographic index (SDI). Methods: Using the Global Burden of Diseases 2019 (GBD 2019) dataset, a retrospective demographic evaluation was undertaken to ascertain the magnitude of vision loss over this period. Metrics evaluated included case numbers, prevalence rates per 100,000 individuals, and shifts in prevalence rates via average annual percentage changes (AAPCs) and years lived with disability (YLDs). Results: From 1990 to 2019, vision impairment rates for individuals aged 65 years and older increased from 40,027.0 (95% UI: 32,232.9-49,945.1) to 40,965.8 (95% UI: 32,911-51,358.3, AAPC: 0.11). YLDs associated with vision loss saw a significant decrease, moving from 1713.5 (95% UI: 1216.2-2339.7) to 1579.1 (95% UI: 1108.3-2168.9, AAPC: -0.12). Gender-based evaluation showed males had lower global prevalence and YLD rates compared to females. Cataracts and near vision impairment were the major factors, raising prevalence by 6.95 and 2.11%, respectively. Cataract prevalence in high-middle SDI regions and near vision deficits in high SDI regions significantly influenced YLDs variation between 1990 and 2019. Conclusion: Over the past three decades, there has been a significant decrease in the vision impairment burden in individuals aged 65 and older worldwide. However, disparities continue, based on disease type, regional SDI, and age brackets. Enhancing eye care services, both in scope and quality, is crucial for reducing the global vision impairment burden among the older adults.


Assuntos
Pessoas com Deficiência , Saúde Global , Masculino , Feminino , Humanos , Idoso , Estudos Retrospectivos , Prevalência , Carga Global da Doença
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1003-1013, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37555853

RESUMO

Retinoblastoma is a prevalent pediatric intraocular tumor. The suppressive effect of gentiopicroside (GPS) has been reported on various tumors. This study sought to determine the effect of GPS on retinoblastoma cell proliferation, apoptosis, invasion, and epithelial-mesenchymal transition (EMT), and tumorigenesis in nude mice. The effect and mechanism of GPS on growth, apoptosis, invasion, and EMT were determined by cell counting kit-8 (CCK-8), western blot, flow cytometry, and transwell assays in retinoblastoma cells. Y79 cells were injected into the vitreous cavity of BALB/c­nude mice to construct a retinoblastoma mouse model. Tumor growth and mouse weight were monitored for sequential 5 weeks. The effect of GPS in vivo was assessed by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and western blot assays. GPS decreased the cell viability of both Y79 and Weri-Rb1 cells with the IC50 of 18.85 µM and 27.57 µM, respectively. Besides, GPS reduced the relative expression of proteins involved in proliferation and EMT, and the number of invading cells, while increased the apoptosis rate and the relative expressions of apoptosis proteins in retinoblastoma cells. Mechanically, GPS decreased the relative protein level of PI3K/AKT pathway, which was then recovered after 740 Y-P was applied. Correspondingly, 740 Y-P reversed the inhibitory effect of GPS on growth, invasion, and EMT, and the increased effect of GPS on apoptosis. Additionally, GPS decreased tumor volume and weight as well as the relative level of Ki-67, VEGF, p-PI3K/PI3K, and p-AKT/AKT, while increased the apoptosis rate in vivo. GPS inhibited retinoblastoma cell proliferation and invasion via deactivating the PI3K/AKT pathway in both cell and animal models.


Assuntos
Glucosídeos Iridoides , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Animais , Camundongos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Carcinogênese , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Movimento Celular
4.
J Endocr Soc ; 8(1): bvad149, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116129

RESUMO

Context: Graves disease (GD) is a prevalent autoimmune disorder with a complex etiology. The association between serum metabolites and GD remains partially understood. Objective: This study aimed to elucidate the causal connections between serum metabolites and predisposition to GD, examining potential genetic interplay. Methods: A 1-sample Mendelian randomization (MR) study was conducted on the GD analysis that included 2836 cases and 374 441 controls. We utilized genome-wide association study summary data from the FinnGen project, analyzing the causal impact of 486 serum metabolites on GD. Approaches used were the inverse variance weighted methodology, Cochran's Q test, MR-Egger regression, MR-PRESSO, Steiger test, and linkage disequilibrium score regression analyses to assess genetic influence on metabolites and GD. Results: 19 metabolites were identified as having a pronounced association with GD risk, of which 10 maintained noteworthy correlations after stringent sensitivity assessments. Three metabolites exhibited significant heritability: kynurenine (OR 3.851, P = 6.09 × 10-4), a risk factor; glycerol 2-phosphate (OR 0.549, P = 3.58 × 10-2) and 4-androsten-3beta,17beta-diol disulfate 2 (OR 0.461, P = 1.34 × 10-2) were recognized as protective factors against GD. Crucially, all 3 exhibited no shared genetic interrelation with GD, further substantiating their potential causal significance in the disease. Conclusion: This study unveils pivotal insights into the intricate relationships between serum metabolites and GD risk. By identifying specific risk and protective factors, it opens avenues for more precise disease understanding and management. The findings underline the importance of integrating genomics with metabolomics to fathom the multifaceted nature of GD.

5.
Front Bioeng Biotechnol ; 10: 879192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519619

RESUMO

Corneal injury (CI) affects corneal integrity and transparency, deteriorating the patient's quality of life. This study aimed to explore the molecular mechanisms by which exosomes secreted from human umbilical cord mesenchymal stem cells (hucMSC-Exos) affect autophagy in human corneal epithelial cells (HCECs) and CI models. We isolated and identified hucMSC-Exos using nanoparticle tracking analysis, transmission electron microscopy, and western blotting. The effects of hucMSC-Exos combined with autophagy regulators on HCECs and CI mice were assessed using cell viability assays, scratch assay, cell cycle assay, apoptosis assay, corneal fluorescein staining, haze grades, pathological examinations, western blotting, and quantitative polymerase chain reaction (qPCR). In vitro results indicated that hucMSC-Exos combined with the autophagy activator had positive effects in promoting the cell proliferation, migration capacity, and the cell cycle by upregulating the proportions of cells in the S phase and the expression of PCNA, Cyclin A, Cyclin E, and CDK2. Meanwhile, the combination treatment reduced the apoptotic rate of HCECs. In vivo results indicated that hucMSC-Exos especially combined them with the autophagy activator significantly alleviated corneal epithelial defects and stromal opacity, reduced the levels of the apoptotic markers Bax and cleaved Caspase-3, reduced the inflammatory response products TNF-α, IL-1ß, IL-6, and CXCL-2, and increased the Bcl-2. This was achieved by upregulating pAMPK/AMPK and pULK1/ULK1 ratios, and Beclin-1 and LC3B II/I, and by downregulating the pmTOR/mTOR ratio and p62. In contrast, clinical indications, apoptosis, and inflammation were aggravated after the application of the autophagy inhibitor. HucMSC-Exos combined with an autophagy activator significantly enhanced HCECs functions and alleviated corneal defects, apoptosis, and inflammation by activating the autophagy signaling pathway, AMPK-mTOR-ULK1, providing a new biological therapy for corneal wound healing and ocular surface regeneration.

6.
Stem Cell Res Ther ; 13(1): 174, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505403

RESUMO

BACKGROUND: Ocular surface and retinal diseases are widespread problems that cannot be ignored in today's society. However, existing prevention and treatment still have many shortcomings and limitations, and fail to effectively hinder the occurrence and development of them. MAIN BODY: The purpose of this review is to give a detailed description of the potential mechanism of exosomes and autophagy. The eukaryotic endomembrane system refers to a range of membrane-bound organelles in the cytoplasm that are interconnected structurally and functionally, which regionalize and functionalize the cytoplasm to meet the needs of cells under different conditions. Exosomal biogenesis and autophagy are two important components of this system and are connected by lysosomal pathways. Exosomes are extracellular vesicles that contain multiple signaling molecules produced by multivesicular bodies derived from endosomes. Autophagy includes lysosome-dependent degradation and recycling pathways of cells or organelles. Recent studies have revealed that there is a common molecular mechanism between exosomes and autophagy, which have been, respectively, confirmed to involve in ocular surface and retinal diseases. CONCLUSION: The relationship between exosomes and autophagy and is mostly focused on fundus diseases, while a deeper understanding of them will provide new directions for the pathological mechanism, diagnosis, and treatment of ocular surface and retinal diseases.


Assuntos
Exossomos , Vesículas Extracelulares , Doenças Retinianas , Autofagia/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/terapia
7.
Ann Transl Med ; 10(4): 223, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280389

RESUMO

Background: Age-related macular degeneration (AMD) is the leading cause of blindness for people over 50 years old worldwide. The purpose of this study was to identify differentially expressed and methylated genes (DEMGs) and construct a co-expression network for AMD. Methods: Microarray expression (GSE29801 dataset) and DNA methylation (GSE102952 dataset) profiles were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were analyzed between AMD retina tissues and normal retina tissues. A protein-protein interaction (PPI) network was constructed and hub genes were screened, followed by functional enrichment analysis. Then, weighted gene co-expression network analysis (WGCNA) was conducted. The ARPE-19 cells were maintained in a hypoxic state to construct an AMD cellular model. Enzyme-linked immunosorbent assay (ELISA) and the real-time qPCR (RT-qPCR) were performed for validation. Results: After overlapping, 16 hypermethylated and down-regulated genes and 15 hypomethylated and up-regulated genes were identified for extramacular AMD. A total of 4 hub genes (LMNB2, EMD, HLA-A, and HLA-B) were screened for AMD in the extramacular retina. Furthermore, 13 hypermethylated and down-regulated genes and 31 hypomethylated and up-regulated genes were identified for macular AMD. Among them, 11 hub genes (HLA-A, HLA-B, HLA-DRB1, IFITM3, SAT1, MAOB, CHRDL1, FSTL1, HSPA1A, AR, and YAP1) were considered hub genes. The DEMGs were distinctly related with immune-related biological processes and pathways. A total of 16 co-expression modules were constructed, of which 2 significantly correlated with AMD. The genes in the 2 modules were involved in various crucial signaling pathways. The HIF1α and VEGF levels were significantly up-regulated in cell supernatant of hypoxia-induced ARPE-19 cells, indicating that the AMD cellular model was successfully established. Hub genes including CHRDL, FSTL1, and IFITM3 displayed significantly higher expression in hypoxia-induced ARPE-19 cells compared to normal cells. Greater up-regulation of CHRDL, FSTL1, and IFITM3 expression was found in hypoxia-induced ARPE-19 cells than in normal cells. Conclusions: These findings offered several key DEMGs and pathways for AMD and constructed AMD-related co-expression modules, deepening understanding of the pathogenesis of AMD.

8.
Gene Ther ; 29(12): 710-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35125496

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication. Many studies have focused on the role of microRNAs (miRNAs) in DR but not specifically on miR-133b-3p. Thus, this study is to unmask the mechanisms of miR-133b-3p in DR. KK/Upj-Ay mice (a spontaneous diabetic nephropathy model of DM, referred to as DR mice) were used in the study, and retinal tissues were collected. Bone marrow mesenchymal stem cells (BMSCs) were isolated and identified. High glucose (HG)-treated mouse retinal microvascular endothelial cells (mRMECs) were transfected or co-cultured with BMSCs-derived exosomes. Then, cell proliferation, migration, apoptosis, angiogenesis, and oxidative stress were observed. MiR-133b-3p and FBN1 expression in tissues and cells was detected. MiR-133b-3p expression was reduced, and FBN1 expression was increased in retinal tissues of DR mice and HG-treated mRMECs. Up-regulating miR-133b-3p or down-regulating FBN1 or BMSCs-derived exosomes impaired oxidative stress, angiogenesis, proliferation, migration, and promoted apoptosis of HG-treated mRMECs. This study has elucidated that exosomal miR-133b-3p from BMSCs suppresses angiogenesis and oxidative stress in DR via FBN1 repression.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Camundongos , Proliferação de Células/genética , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/terapia , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Exossomos/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo
9.
J Diabetes Investig ; 13(5): 781-795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34839589

RESUMO

INTRODUCTION: The loss of retinal pigment epithelial (RPE) cells is associated with the etiology of diabetic retinopathy (DR). This study investigated the effects of circular RNA ZNF532 (circZNF532) on apoptosis and pyroptosis of RPE cells. MATERIALS AND METHODS: Blood samples were collected from patients with DR and healthy volunteers. A human RPE cell line ARPE-19 was induced by high glucose (HG) and assayed for cell viability, apoptosis, and pyroptosis. The binding of miR-20b-5p with circZNF532 and STAT3 was confirmed by a luciferase activity assay. A mouse model of diabetic retinopathy was established. RESULTS: CircZNF532 and STAT3 were upregulated but miR-20b-5p was downregulated in the serum samples of patients with DR and HG-induced ARPE-19 cells. Elevated miR-20b-5p or CircZNF532 knockdown enhanced proliferation but reduced apoptosis and pyroptosis of ARPE-19 cells. CircZNF532 sponged miR-20b-5p and inhibited its expression. STAT3 was verified as a target of miR-20b-5p. MiR-20b-5p modulated ARPE-19 cell viability, apoptosis, and pyroptosis by targeting STAT3. Mice with STZ-induced diabetes showed elevated expressions of circZNF532 and STAT3 but decreased the level of miR-20b-5p compared with the controls. Knockdown of circZNF532 inhibited apoptosis and pyroptosis in mouse retinal tissues. CONCLUSION: CircZNF532 knockdown rescued human RPE cells from HG-induced apoptosis and pyroptosis by regulating STAT3 via miR-20b-5p.


Assuntos
Retinopatia Diabética , MicroRNAs , RNA Circular , Epitélio Pigmentado da Retina , Fator de Transcrição STAT3 , Animais , Apoptose/genética , Apoptose/fisiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Epiteliais/metabolismo , Glucose/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/genética , Piroptose/fisiologia , RNA Circular/genética , RNA Circular/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
Aging (Albany NY) ; 13(3): 4045-4062, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33428593

RESUMO

In this study, we found that ALKBH5, a key component of the N6-methyladenosine (m6A) methyltransferase complex, was significantly elevated in uveal melanoma (UM) cell lines and that ALKBH5 downregulation inhibited tumor growth in vivo. High ALKBH5 expression predicted worse outcome in patients with UM. EP300-induced H3K27 acetylation activation increased ALKBH5 expression. Downregulation of ALKBH5 inhibited UM cell proliferation, migration, and invasion and increased apoptosis in vitro. Besides, ALKBH5 may promote UM metastasis by inducing epithelial-to-mesenchymal transition (EMT) via demethylation of FOXM1 mRNA, which increases its expression and stability. In sum, our study indicates that AKLBH5-induced m6A demethylation of FOXM1 mRNA promotes UM progression. Therefore, AKLBH5 is a potential prognostic biomarker and therapeutic target in UM.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/genética , Proteína Forkhead Box M1/genética , Melanoma/genética , RNA Mensageiro/metabolismo , Neoplasias Uveais/genética , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Desmetilação , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
11.
Sci Total Environ ; 729: 138949, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32387772

RESUMO

Moso bamboo (Phyllostachys Pubescens) forests exhibit a great potential to sequestrate carbon dioxide from atmosphere and to mitigate global climate change. However, they were increasingly under abandoned (i.e., no fertilization, the low intensity and frequency of felling and bamboo shoot digging) due to decreasing economic values of bamboo-related products and increasing labor cost. So far, the changes in soil carbon (C) and nitrogen (N) pools in bamboo forests following abandonment are poorly addressed. In this study, Moso bamboo stands under intensively management and abandonment for different durations were sampled to explore the C and N pool dynamics at the top 40 cm soil. We classified abandonment durations into three categories: discarded or abandoned management for 1-6 years (DM-I), 7-12 years (DM-II) and 13-18 years (DM-III). Our results indicated that (1) soil organic carbon (SOC) storage was significantly increased with abandonment management compared with intensive management (Control, CK), but the durations of abandonment management had no significant effects on SOC. Microbial biomass carbon (MBC) concentration increased from DM-I to DM-III in the 0-40 cm soil layer (P < 0.01), and water-soluble organic carbon (WSOC) concentration decreased through DM-I (P < 0.01). (2) Abandonment management did not significantly affect soil total nitrogen (TN) storage at depth of 0-40 cm, with 9.54 Mg ha-1 for CK, 9.59 Mg ha-1 for DM-I, 9.89 Mg ha-1 for DM-II and 9.69 Mg ha-1 for DM-III. Water-soluble organic nitrogen (WSON) concentration significantly decreased from CK to DM-III. Ammonium nitrogen (NH4+-N) concentration increased from DM-I to DM-III (P < 0.01), and nitrate nitrogen (NO3--N) concentration decreased from CK to DM-III (P < 0.01). The results of the effects of abandonment durations on soil properties in Moso bamboo forests provide valuable information for forest restoration and management.


Assuntos
Florestas , Solo , Biomassa , China , Nitrogênio , Poaceae
12.
J Cell Physiol ; 234(8): 13342-13352, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30648255

RESUMO

The activation and proliferation of human Tenon's fibroblasts (HTFs) play a vital role in the fibrosis in the pathology of the scar formation after the glaucoma filtration surgery. Transforming growth factor ß1 (TGFß1)/Smads signaling has been reported to promote fibrosis. In our previous study, we revealed that TGFß1-induced orbital fibroblast activation and proliferation through Wnt/ß-catenin signaling. As microRNA (miR)-139 could target several factors in Wnt signaling to modulate fibrosis, here, the effect and mechanism of miR-139 in HTF activation and proliferation were investigated. miR-139 overexpression significantly reversed the TGFß1-induced increase in collagen I and α-smooth muscle actin contents and proliferation in HTFs. CTNNB1 and CTNND1 were direct downstream of miR-139 and can significantly restore the suppressive effect of miR-139 on the activation and proliferation in HTFs under TGFß1 stimulation. Smad2/3/4 complex inhibits the transcription activity of miR-139, most possibly by Smad4 binding to the miR-139 promoter. Taken together, we demonstrated a new mechanism of HTF activation and proliferation from the perspective of miRNA regulation, which may provide new strategies for improving the fibrosis after the glaucoma filtration surgery.


Assuntos
MicroRNAs/genética , Proteínas Smad/metabolismo , Cápsula de Tenon/citologia , Cápsula de Tenon/metabolismo , Sítios de Ligação/genética , Cateninas/antagonistas & inibidores , Cateninas/genética , Cateninas/metabolismo , Proliferação de Células , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Implantes para Drenagem de Glaucoma/efeitos adversos , Humanos , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo , delta Catenina
13.
Ther Clin Risk Manag ; 14: 607-616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618929

RESUMO

BACKGROUND: Orbital decompression is an important surgical procedure for treatment of Graves' ophthalmopathy (GO), especially in women. It is reasonable for balanced orbital decompression of the lateral and medial wall. Various surgical approaches, including endoscopic transnasal surgery for medial wall and eye-side skin incision surgery for lateral wall, are being used nowadays, but many of them lack the validity, safety, or cosmetic effect. PATIENTS AND METHODS: Endoscopic orbital decompression of lateral wall through hairline approach and decompression of medial wall via endoscopic transnasal surgery was done to achieve a balanced orbital decompression, aiming to improve the appearance of proptosis and create conditions for possible strabismus and eyelid surgery afterward. From January 29, 2016 to February 14, 2017, this surgery was performed on 41 orbits in 38 patients with GO, all of which were at inactive stage of disease. Just before surgery and at least 3 months after surgery, Hertel's ophthalmostatometer and computed tomography (CT) were used to check proptosis and questionnaires of GO quality of life (QOL) were completed. FINDINGS: The postoperative retroversion of eyeball was 4.18±1.11 mm (Hertel's ophthalmostatometer) and 4.17±1.14 mm (CT method). The patients' QOL was significantly improved, especially the change in appearance without facial scar. The only postoperative complication was local soft tissue depression at temporal region. Obvious depression occurred in four cases (9.76%), which can be repaired by autologous fat filling. INTERPRETATION: This surgery is effective, safe, and cosmetic. Effective balanced orbital decompression can be achieved by using this original and innovative surgery method. The whole manipulation is safe and controllable under endoscope. The postoperative scar of endoscopic surgery through hairline approach is covered by hair and the anatomic structure of anterior orbit is not impacted.

14.
Oncotarget ; 8(62): 105126-105136, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29285239

RESUMO

Anti-fibrotic therapeutic methods with safety and efficiency after glaucoma filtration surgery (GFS) are desirable. In our previous study, by using Human Tenon's Fibroblasts (HTFs) as a model, we proved the expression of peroxisome proliferator activates receptor-γ (PPAR-γ) in HTFs; in addition, rosiglitazone (RSG), an agonist of PPAR-γ, can inhibit transforming growth factorsß1 (TGF-ß1)-induced reactivation of HTFs, thus to inhibit specifically scarring after GFS through intervening TGF-ß/Smads signal pathway. However, a better drug delivery way of RSG, to prolong the duration of its function, and to reduce the toxicity of RSG to ocular tissue still remains challenges. Low density lipoprotein receptor (LDLr) is strongly expressed in hyper-proliferation HTFs after GFS. Therefore, we structured targeting LDL-RSG complexes and channel them into HTFs through LDL-LDLr pathway in order to promote anti-proliferation of HTFs and reduce the toxicity to ocular tissue. Meanwhile, in order to improve the release properties of LDL-RSG complexes, we structured slow release system of LDL-RSG/chitosan-calcium alginate - nanoparticles (CSNP), which effectively inhibited TGF-ß1-induced HTFs proliferation, synthesis of extracellular matrix and activation of TGF-ß1/SMAD pathway. These data suggested that LDL-RSG/CSNP can be a new anti-fibrotic therapeutic method on scarring after GFS and also a novelty administration of RSG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...